Do you want to publish a course? Click here

High-order adaptive time stepping for vesicle suspensions with viscosity contrast

331   0   0.0 ( 0 )
 Added by Bryan Quaife
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We construct a high-order adaptive time stepping scheme for vesicle suspensions with viscosity contrast. The high-order accuracy is achieved using a spectral deferred correction (SDC) method, and adaptivity is achieved by estimating the local truncation error with the numerical error of physically constant values. Numerical examples demonstrate that our method can handle suspensions with vesicles that are tumbling, tank-treading, or both. Moreover, we demonstrate that a user-prescribed tolerance can be automatically achieved for simulations with long time horizons.



rate research

Read More

We consider suspensions of rigid bodies in a two-dimensional viscous fluid. Even with high-fidelity numerical methods, unphysical contact between particles occurs because of spatial and temporal discretization errors. We apply the method of Lu et al. [Journal of Computational Physics, 347:160-182, 2017] where overlap is avoided by imposing a minimum separation distance. In its original form, the method discretizes interactions between different particles explicitly. Therefore, to avoid stiffness, a large minimum separation distance is used. In this paper, we extend the method of Lu et al. by treating all interactions implicitly. This new time stepping method is able to simulate dense suspensions with large time step sizes and a small minimum separation distance. The method is tested on various unbounded and bounded flows, and rheological properties of the resulting suspensions are computed.
We present a fully adaptive multiresolution scheme for spatially two-dimensional, possibly degenerate reaction-diffusion systems, focusing on combustion models and models of pattern formation and chemotaxis in mathematical biology. Solutions of these equations in these applications exhibit steep gradients, and in the degenerate case, sharp fronts and discontinuities. The multiresolution scheme is based on finite volume discretizations with explicit time stepping. The multiresolution representation of the solution is stored in a graded tree. By a thresholding procedure, namely the elimination of leaves that are smaller than a threshold value, substantial data compression and CPU time reduction is attained. The threshold value is chosen optimally, in the sense that the total error of the adaptive scheme is of the same slope as that of the reference finite volume scheme. Since chemical reactions involve a large range of temporal scales, but are spatially well localized (especially in the combustion model), a locally varying adaptive time stepping strategy is applied. It turns out that local time stepping accelerates the adaptive multiresolution method by a factor of two, while the error remains controlled.
We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm. We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as 4.7.
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions, and have applications in a number of fields. In this article, we develop an adaptive time-stepping scheme for the solution of the PNP-FBV equations based on two time-stepping methods: a fully implicit (BDF2) method, and an implicit-explicit (SBDF2) method. We present simulations under both current and voltage boundary conditions and demonstrate the ability to simulate a large range of parameters, including any value of the singular perturbation parameter $epsilon$. When the underlying dynamics is one that would have the solutions converge to a steady-state solution, we observe that the adaptive time-stepper based on the SBDF2 method produces solutions that ``nearly converge to the steady state and that, simultaneously, the time-step sizes stabilize to a limiting size $dt_infty$. In the companion to this article cite{YPD_Part2}, we linearize the SBDF2 scheme about the steady-state solution and demonstrate that the linearized scheme is conditionally stable. This conditional stability is the cause of the adaptive time-steppers behaviour. While the adaptive time-stepper based on the fully-implicit (BDF2) method is not subject to such time-step constraints, the required nonlinear solve yields run times that are significantly longer.
The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Stormer-Verlet algorithm. Boris method is phase space volume conserving and simulated particles typically remain near the correct trajectory. However, it is only second order accurate. Therefore, in scenarios where it is not enough to know that a particle stays on the right trajectory but one needs to know where on the trajectory the particle is at a given time, Boris method requires very small time steps to deliver accurate phase information, making it computationally expensive. We derive an improved version of the high-order Boris spectral deferred correction algorithm (Boris-SDC) by adopting a convergence acceleration strategy for second order problems based on the Generalised Minimum Residual (GMRES) method. Our new algorithm is easy to implement as it still relies on the standard Boris method. Like Boris-SDC it can deliver arbitrary order of accuracy through simple changes of runtime parameter but possesses better long-term energy stability. We demonstrate for two examples, a magnetic mirror trap and the Solevev equilibrium, that the new method can deliver better accuracy at lower computational cost compared to the standard Boris method. While our examples are motivated by tracking ions in the magnetic field of a nuclear fusion reactor, the introduced algorithm can potentially deliver similar improvements in efficiency for other applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا