The chemical pressure effect on the structural, transport, magnetic and electronic properties (by measuring X-ray photoemission spectroscopy) of ZnV2O4 has been investigated by doping Mn and Co on the Zinc site of ZnV2O4. With Mn doping the V-V distance increases and with Co doping it decreases. The resistivity and thermoelectric power data indicate that as the V-V distance decreases the system moves towards Quantum Phase Transition. The transport data also indicate that the conduction is due to the small polaron hopping. The chemical pressure shows the non-monotonous behaviour of charge gap and activation energy. The XPS study also supports the observation that with decrease of the V-V separation the system moves towards Quantum Phase Transition. On the other hand when Ti is doped on the V-site of ZnV2O4 the metal-metal distance decreases and at the same time the TN also increases.