Do you want to publish a course? Click here

A pathway to optimize the properties of magnetocaloric MnxFe2-x(P1-yGey) for magnetic refrigeration

140   0   0.0 ( 0 )
 Added by Jeffrey Lynn
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetocaloric materials can be useful in magnetic refrigeration applications, but to be practical the magneto-refrigerant needs to have a very large magnetocaloric effect (MCE) near room temperature for modest applied fields (<2 Tesla) with small hysteresis and magnetostriction, and should have a complete magnetic transition, be inexpensive, and environmentally friendly. One system that may fulfill these requirements is MnxFe2-xP1-yGey, where a combined first-order structural and magnetic transition occurs between the high temperature paramagnetic and low temperature ferromagnetic phase. We have used neutron diffraction, differential scanning calorimetry, and magnetization measurements to study the effects of Mn and Ge location in the structure on the ordered magnetic moment, MCE, and hysteresis for a series of compositions of the system near optimal doping. The diffraction results indicate that the Mn ions located on the 3f site enhance the desirable properties, while those located on the 3g sites are detrimental. The entropy changes measured directly by calorimetry can exceed 40 J/kg-K. The phase fraction that transforms, hysteresis of the transition, and entropy change can be controlled by both the compositional homogeneity and the particle size, and an annealing procedure has been developed that substantially improves the performance of all three properties of the material. On the basis of these results we have identified a pathway to optimize the MCE properties of this system for magnetic refrigeration applications.



rate research

Read More

Neutron diffraction and magnetization measurements of the magneto refrigerant Mn1+yFe1-yP1-xGex reveal that the ferromagnetic and paramagnetic phases correspond to two very distinct crystal structures, with the magnetic entropy change as a function of magnetic field or temperature being directly controlled by the phase fraction of this first-order transition. By tuning the physical properties of this system we have achieved a maximum magnetic entropy change exceeding 74 J/Kg K for both increasing and decreasing field, more than twice the value of the previous record.
The existence and feasibility of the multicaloric, polycrystalline material 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3, exhibiting magnetocaloric and electrocaloric properties, are demonstrated. Both the electrocaloric and magnetocaloric effects are observed over a broad temperature range below room temperature. The maximum magnetocaloric temperature change of ~0.26 K is obtained with a magnetic-field amplitude of 70 kOe at a temperature of 5 K, while the maximum electrocaloric temperature change of ~0.25 K is obtained with an electric-field amplitude of 60 kV/cm at a temperature of 180 K. The material allows a multicaloric cooling mode or a separate caloric-modes operation depending on the origin of the external field and the temperature at which the field is applied.
We present a study of the magnetocaloric effect in La5/8-yPryCa3/8MnO3 (y=0.3) and Pr0.5Ca0.09Sr0.41MnO3 manganites. The low temperature state of both ystems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase . As additional features, La5/8-yPryCa3/8MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5Ca0.09Sr0.41MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from non-reversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the samples adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration.
The compounds FeMnAsxP1-x are very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on magnetocaloric materials still adopts simple molecular-field models in the description of important properties like the entropy variation that accompanies applied isothermal magnetic field cycling, for instance. We apply a Green function theoretical treatment for such analysis. The advantages of such approach are well-known since the details of the crystal structure are incorporated in the model, as well as a precise description of correlations between spins of the transition metal ions can be obtained. For the sake of simplcity we adopt a simple one-exchange parameter Heisenberg model, and the observed first-order phase transitions are reproduced by the introduction of a biquadratic term in the hamiltonian. Good agreement with experimental magnetocaloric data for FeMnAsxP1-x compounds is obtained, as well as an agreement with the magnetic field dependence for these properties predicted from the Landau theory of continuous phase transitions.
The isostructural alloying of two compounds with extremely different magnetic and thermo-structural properties has resulted in a new system, (MnNiSi)1-x(FeCoGe)x, that exhibits extraordinary magnetocaloric properties with an acute sensitivity to applied hydrostatic pressure (P). Application of hydrostatic pressure shifts the first-order phase transition to lower temperature ($Delta$ T=-41 K with P=3.43 kbar) but preserves the giant value of isothermal entropy change (-$Delta$S$max$=143.7 J/kg K for a field change of {Delta}B=5 T at atmospheric pressure). Together with the magnetic field, this pressure-induced temperature shift can be used to significantly increase the effective relative cooling power.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا