No Arabic abstract
The space mission LOFT (Large Observatory For X-ray Timing) was selected in 2011 by ESA as one of the candidates for the M3 launch opportunity. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM), based on Silicon Drift Detectors (SDDs). In orbit, they would be exposed to hyper-velocity impacts by environmental dust particles, which might alter the surface properties of the SDDs. In order to assess the risk posed by these events, we performed simulations in ESABASE2 and laboratory tests. Tests on SDD prototypes aimed at verifying to what extent the structural damages produced by impacts affect the SDD functionality have been performed at the Van de Graaff dust accelerator at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. For the WFM, where we expect a rate of risky impacts notably higher than for the LAD, we designed, simulated and successfully tested at the plasma accelerator at the Technical University in Munich (TUM) a double-wall shielding configuration based on thin foils of Kapton and Polypropylene. In this paper we summarize all the assessment, focussing on the experimental test campaign at TUM.
LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions were completed at the end of 2013. LOFT is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a <1{deg} collimated FoV and a wide field monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept adaptable for other missions.
The Large Observatory for X-ray Timing (LOFT) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024). It is specifically designed to exploit the diagnostics of very rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. The LOFT scientific payload is composed of the Large Area Detector (LAD), devoted to spectral-timing observation, and the Wide Field Monitor (WFM), whose primary goal it is to monitor the X-ray sky for transient events that need to be followed up with the LAD, and to measure the long-term variability of galactic X-ray sources and localize gamma-ray bursts. Here we describe the simulations carried out to optimize the WFM design and to characterize the instrument response to both isolated sources and crowded fields in the proximity of the galactic bulge.
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Wide Field Monitor (WFM). The WFM instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/WFM envisages a wide field X-ray monitor system in the 2-50 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors. The WFM will consist of 3 pairs of coded mask cameras with a total combined Field of View (FoV) of 90x180 degrees at zero response and a source localization accuracy of ~1 arcmin. In this paper we provide an overview of the WFM instrument design, including new elements with respect to the earlier LOFT configuration, and anticipated performance.
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., which are expected to be directly detected for the first time in late 2010s by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.
We propose a concept of multiplexing lobster-eye (MuLE) optics to achieve significant reductions in the number of focal plane imagers in lobster-eye (LE) wide-field X-ray monitors. In the MuLE configuration, an LE mirror is divided into several segments and the X-rays reflected on each of these segments are focused on a single image sensor in a multiplexed configuration. If each LE segment assumes a different rotation angle, the azimuthal rotation angle of a cross-like image reconstructed from a point source by the LE optics identifies the specific segment that focuses the X-rays on the imager. With a focal length of 30 cm and LE segments with areas of 10 x 10 cm^2, ~1 sr of the sky can be covered with 36 LE segments and only four imagers (with total areas of 10 x 10 cm^2). A ray tracing simulation was performed to evaluate the nine-segment MuLE configuration. The simulation showed that the flux (0.5 to 2 keV) associated with the 5-sigma detection limit was ~2 x 10^-10 erg cm^-2 s^-1 (10 mCrab) for a transient with a duration of 100 s. The simulation also showed that the direction of the transient for flux in the range of 14 to 17 mCrab at 0.6 keV was determined correctly with 99.7% confidence limit. We conclude that the MuLE configuration can become an effective on-board device for small satellites for future X-ray wide-field transient monitoring.