SIMPle Dark Matter: Self-Interactions and keV Lines


Abstract in English

We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass $m_X$ and hidden glueballs with mass near the confinement scale $Lambda$. For $m_X sim 1,text{TeV}$ and $Lambda sim 100,text{MeV}$, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order $Lambda^2 / m_X sim 10,text{keV}$. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.

Download