Do you want to publish a course? Click here

Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions

141   0   0.0 ( 0 )
 Added by Yanghui Liu
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

For a stochastic differential equation(SDE) driven by a fractional Brownian motion(fBm) with Hurst parameter $H>frac{1}{2}$, it is known that the existing (naive) Euler scheme has the rate of convergence $n^{1-2H}$. Since the limit $Hrightarrowfrac{1}{2}$ of the SDE corresponds to a Stratonovich SDE driven by standard Brownian motion, and the naive Euler scheme is the extension of the classical Euler scheme for It^{o} SDEs for $H=frac{1}{2}$, the convergence rate of the naive Euler scheme deteriorates for $Hrightarrowfrac{1}{2}$. In this paper we introduce a new (modified Euler) approximation scheme which is closer to the classical Euler scheme for Stratonovich SDEs for $H=frac{1}{2}$, and it has the rate of convergence $gamma_n^{-1}$, where $gamma_n=n^{2H-{1}/2}$ when $H<frac{3}{4}$, $gamma_n=n/sqrt{log n}$ when $H=frac{3}{4}$ and $gamma_n=n$ if $H>frac{3}{4}$. Furthermore, we study the asymptotic behavior of the fluctuations of the error. More precisely, if ${X_t,0le tle T}$ is the solution of a SDE driven by a fBm and if ${X_t^n,0le tle T}$ is its approximation obtained by the new modified Euler scheme, then we prove that $gamma_n(X^n-X)$ converges stably to the solution of a linear SDE driven by a matrix-valued Brownian motion, when $Hin(frac{1}{2},frac{3}{4}]$. In the case $H>frac{3}{4}$, we show the $L^p$ convergence of $n(X^n_t-X_t)$, and the limiting process is identified as the solution of a linear SDE driven by a matrix-valued Rosenblatt process. The rate of weak convergence is also deduced for this scheme. We also apply our approach to the naive Euler scheme.



rate research

Read More

In this paper, we study two variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian motions. One is the incomplete Taylor scheme which excludes some terms of an Taylor scheme in its recursive computation so as to reduce the computation time. The other one is to add some deterministic terms to an incomplete Taylor scheme to improve the mean rate of convergence. Almost sure rate of convergence and $L_p$-rate of convergence are obtained for the incomplete Taylor schemes. Almost sure rate is expressed in terms of the Holder exponents of the driving signals and the $L_p$-rate is expressed by the Hurst parameters. Both rates involves with the incomplete Taylor scheme in a very explicit way and then provide us with the best incomplete schemes, depending on that one needs the almost sure convergence or one needs $L_p$-convergence. As in the smooth case, general Taylor schemes are always complicated to deal with. The incomplete Taylor scheme is even more sophisticated to analyze. A new feature of our approach is the explicit expression of the error functions which will be easier to study. Estimates for multiple integrals and formulas for the iterated vector fields are obtained to analyze the error functions and then to obtain the rates of convergence.
Let $A$ and $B$ be two $N$ by $N$ deterministic Hermitian matrices and let $U$ be an $N$ by $N$ Haar distributed unitary matrix. It is well known that the spectral distribution of the sum $H=A+UBU^*$ converges weakly to the free additive convolution of the spectral distributions of $A$ and $B$, as $N$ tends to infinity. We establish the optimal convergence rate ${frac{1}{N}}$ in the bulk of the spectrum.
64 - Alexey M. Kulik 2007
We consider sequences of additive functionals of difference approximations for uniformly non-degenerate multidimensional diffusions. The conditions are given, sufficient for such a sequence to converge weakly to a W-functional of the limiting process. The class of the W-functionals, that can be obtained as the limiting ones, is completely described in the terms of the associated W-measures, and coincides with the class of the functionals that are regular w.r.t. the phase variable.
107 - Madalina Deaconu 2020
This paper develops a new technique for the path approximation of one-dimensional stochastic processes, more precisely the Brownian motion and families of stochastic differential equations sharply linked to the Brownian motion (usually known as L and G-classes). We are interested here in the $epsilon$-strong approximation. We propose an explicit and easy to implement procedure that constructs jointly, the sequences of exit times and corresponding exit positions of some well chosen domains. The main results control the number of steps to cover a fixed time interval and the convergence theorems for our scheme. We combine results on Brownian exit times from time-depending domains (one-dimensional heat balls) and classical renewal theory. Numerical examples and issues are also described in order to complete the theoretical results.
228 - Feng-Yu Wang , Bingyao Wu 2021
Let $M$ be a connected compact Riemannian manifold possibly with a boundary, let $Vin C^2(M)$ such that $mu(d x):=e^{V(x)}d x$ is a probability measure, where $d x$ is the volume measure, and let $L=Delta+ abla V$. The exact convergence rate in Wasserstein distance is derived for empirical measures of subordinations for the (reflecting) diffusion process generated by $L$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا