We discuss the force and torque acting on spherical particles in an ensemble in the presence of a uniform AC electric field. We show that for a torque causing particle rotation to appear the particle must be absorptive. Our proof includes all electromagnetic excitations, which in the case of two or more particles gives rise to one or more resonances in the spectrum of force and torque depending on interparticle distance. Several peaks are found in the force and torque between two spheres at small interparticle distances, which coalesce to just one as the separation grows beyond three particle radii. We also show that in the presence of dissipation the force on each particle is non conservative and may not be derived from the classical interaction potential energy as has been done in the past.