Statistical magnitudes and the Klein tunneling in bi-layer graphene: influence of evanescent waves


Abstract in English

The problem of the Klein tunneling across a potential barrier in bi-layer graphene is addressed. The electron wave functions are treated as massive chiral particles. This treatment allows us to compute the statistical complexity and Fisher-Shannon information for each angle of incidence. The comparison of these magnitudes with the transmission coefficient through the barrier is performed. The role played by the evanescent waves on these magnitudes is disclosed. Due to the influence of these waves, it is found that the statistical measures take their minimum values not only in the situations of total transparency through the barrier, a phenomenon highly anisotropic for the Klein tunneling in bi-layer graphene.

Download