No Arabic abstract
We present broadband, low-frequency (25-80 MHz and 110-190 MHz) LOFAR observations of PSR B0943+10, with the goal of better illuminating the nature of its enigmatic mode-switching behaviour. This pulsar shows two relatively stable states: a Bright (B) and Quiet (Q) mode, each with different characteristic brightness, profile morphology, and single-pulse properties. We model the average profile evolution both in frequency and time from the onset of each mode, and highlight the differences between the two modes. In both modes, the profile evolution can be well explained by radius-to-frequency mapping at altitudes within a few hundred kilometres of the stellar surface. If both B and Q-mode emission originate at the same magnetic latitude, then we find that the change of emission height between the modes is less than 6%. We also find that, during B-mode, the average profile is gradually shifting towards later spin phase and then resets its position at the next Q-to-B transition. The observed B-mode profile delay is frequency-independent (at least from 25-80 MHz) and asymptotically changes towards a stable value of about 0.004 in spin phase by the end of mode instance, much too large to be due to changing spin-down rate. Such a delay can be interpreted as a gradual movement of the emission cone against the pulsars direction of rotation, with different field lines being illuminated over time. Another interesting explanation is a possible variation of accelerating potential inside the polar gap. This explanation connects the observed profile delay to the gradually evolving subpulse drift rate, which depends on the gradient of the potential across the field lines.
PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over timescales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR discovery that PSR B0823+26 has a weak and sporadically emitting quiet (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting bright (B) mode. Previously, the pulsar has been undetected in the Q-mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B-mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q-mode and B-mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed.
We use broadband sensitive LOFAR observations in the 25-80 MHz frequency range to study the single-pulse emission properties of the mode-switching pulsar B0943+10. We review the derivation of magnetospheric geometry, originally based on low-frequency radio data, and show that the geometry is less constrained than previously thought. This may be used to help explain the large fractional amplitudes of the observed thermal X-ray pulsations from the polar cap, which contradict the almost aligned rotator model of PSR B0943+10. We analyse the properties of drifting subpulses in the Bright mode and report on the minutes-long variations of the drift period. We searched for the periodic amplitude modulation of drifting subpulses, which is a vital argument for constraining several important system parameters: the degree of aliasing, the orientation of the line-of-sight vector with respect to magnetic and spin axes, the angular velocity of the carousel, and thus, the gradient of the accelerating potential in the polar gap. The periodic amplitude modulation was not detected, indicating that it may be a rare or narrow-band phenomenon. Based on our non-detection and review of available literature, we chose to leave the aliasing order unconstrained and derived the number of sparks under different assumptions about the aliasing order and geometry angles. Contrary to the previous findings, we did not find a large (of the order of 10%) gradual variation of the separation between subpulses throughout Bright mode. We speculate that this large variation may be due to the incorrect accounting for the curvature of the line of sight within the on-pulse window. Finally, we report on the frequency-dependent drift phase delay, which is similar to the delay reported previously for PSR B0809+74. We provide a quantitative explanation of the observed frequency-dependent drift phase delay within the carousel model.
New simultaneous X-ray and radio observations of the archetypal mode-switching pulsar PSR B0943+10 have been carried out with XMM-Newton and the LOFAR, LWA and Arecibo radio telescopes in November 2014. They allowed us to better constrain the X-ray spectral and variability properties of this pulsar and to detect, for the first time, the X-ray pulsations also during the X-ray-fainter mode. The combined timing and spectral analysis indicates that unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap are present during both radio modes and vary in a correlated way.
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed magnetar-like variability, a particularly interesting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.
The Double Pulsar, PSR J$0737$$-$$3039$A/B, is a unique system in which both neutron stars have been detected as radio pulsars. As shown in Ferdman et al., there is no evidence for pulse profile evolution of the A pulsar, and the geometry of the pulsar was fit well with a double-pole circular radio beam model. Assuming a more realistic polar cap model with a vacuum retarded dipole magnetosphere configuration including special relativistic effects, we create synthesized pulse profiles for A given the best-fit geometry from the simple circular beam model. By fitting synthesized pulse profiles to those observed from pulsar A, we constrain the geometry of the radio beam, namely the half-opening angle and the emission altitude, to be $30^circ$ and $10$ neutron star radii, respectively. Combining the observational constraints of PSR J$0737$$-$$3039$A/B, we are able to construct the full three-dimensional orbital geometry of the Double Pulsar. The relative angle between the spin axes of the two pulsars ($Delta_S$) is estimated to be ($138^circ pm 5^circ$) at the current epoch and will likely remain constant until tidal interactions become important in $sim$$85$ Myr, at merger.