No Arabic abstract
During 2011 February 13 to 15, three Earth-directed CMEs launched in successively were recorded as limb CMEs by coronagraphs (COR) of STEREO. These CMEs provided an opportunity to study their geometrical and kinematic evolution from multiple vantage points. In this paper, we examine the differences in geometrical evolution of slow and fast speed CMEs during their propagation in the heliosphere. We also study their interaction and collision using STEREO/SECCHI COR and Heliospheric Imager (HI) observations. We have found evidence of interaction and collision between the CMEs of February 15 and 14 in COR2 and HI1 FOV, respectively, while the CME of February 14 caught the CME of February 13 in HI2 FOV. By estimating the true mass of these CMEs and using their pre and post-collision dynamics, the momentum and energy exchange between them during collision phase are studied. We classify the nature of observed collision between CME of February 14 and 15 as inelastic, reaching close to elastic regime. Relating imaging observations with the in situ measurements, we find that the CMEs move adjacent to each other after their collision in the heliosphere and are recognized as distinct structures in in situ observations by WIND spacecraft at L1. Our results highlight the significance of HI observations in studying CME-CME collision for the purpose of improved space weather forecasting.
Coronal Mass Ejections (CMEs) are large-scale eruptions from the Sun into interplanetary space. Despite being major space weather drivers, our knowledge of the CME properties in the inner heliosphere remains constrained by the scarcity of observations at distances other than 1 au. Furthermore, most CMEs are observed in situ by single spacecraft, requiring numerical models to complement the sparse observations available. We aim to assess the ability of the linear force-free spheromak CME model in EUHFORIA to describe the radial evolution of interplanetary CMEs, yielding new context for observational studies. We model one well-studied CME, and investigate its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterise the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques traditionally employed to analyse real in situ data. Results show that the modelled radial evolution of the mean solar wind and CME values is consistent with observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding wind: the expansion is rapid within 0.4 au, and moderate at larger distances. The early rapid expansion could not explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry used. The magnetic field profile indicates a relaxation of the CME during propagation, while ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. We also report a CME wake that is significantly shorter than suggested by observations. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs; nevertheless, improvements are required to better reproduce the CME radial extension.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
Aims. The study of the morphology of coronal mass ejections (CMEs) is an auspicious approach to understanding how magnetic fields are structured within CMEs. Although earlier studies have suggested an asymmetry in the width of CMEs in orthogonal directions, this has not been inspected using multi-viewpoint observations. Methods. We inspect the early evolution (below ten solar radii) of the morphology of a dozen CMEs occurring under specific conditions of observing spacecraft location and CME trajectory, favorable to reduce uncertainties typically involved in the 3D reconstruction used here. These events are carefully reconstructed by means of a forward modeling tool using simultaneous observations of STEREO EUVI and SDO/AIA as input when originating low in the corona, and followed up in the outer fields of view of the STEREO and the SOHO coronagraphs. We then examine the height evolution of the morphological parameters arising from the reconstructions. Results. The multi-viewpoint analysis of this set of CMEs revealed that their initial expansion --below three solar radii-- is considerably asymmetric and non-self-similar. Both angular widths, namely along the main axes of CMEs ($AW_L$) and in the orthogonal direction ($AW_D$, representative of the flux rope diameter), exhibit much steeper change rates below this height, with the growth rate of $AW_L$ found to be larger than that of $AW_D$, also below that height. Angular widths along the main axes of CMEs are on average $approx$1.8 times larger than widths in the orthogonal direction $AW_D$. The ratios of the two expansion speeds, namely in the directions of CMEs main axes and in their orthogonal, are nearly constant in time after $sim$4 solar radii, with an average ratio $approx$1.6. Heights at which the width change rate is defined to stabilize are greater for $AW_L$ than for $AW_D$.
So far most studies on the structure of coronal mass ejections (CMEs) are conducted through white-light coronagraphs, which demonstrate about one third of CMEs exhibit the typical three-part structure in the high corona (e.g., beyond 2 Rs), i.e., the bright front, the dark cavity and the bright core. In this paper, we address the CME structure in the low corona (e.g., below 1.3 Rs) through extreme-ultraviolet (EUV) passbands and find that the three-part CMEs in the white-light images can possess a similar three-part appearance in the EUV images, i.e., a leading edge, a low-density zone, and a filament or hot channel. The analyses identify that the leading edge and the filament or hot channel in the EUV passbands evolve into the front and the core later within several solar radii in the white-light passbands, respectively. Whats more, we find that the CMEs without obvious cavity in the white-light images can also exhibit the clear three-part appearance in the EUV images, which means that the low-density zone in the EUV images (observed as the cavity in white-light images) can be compressed and/or transformed gradually by the expansion of the bright core and/or the reconnection of magnetic field surrounding the core during the CME propagation outward. Our study suggests that more CMEs can possess the clear three-part structure in their early eruption stage. The nature of the low-density zone between the leading edge and the filament or hot channel is discussed.
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) has been used to simulate the propagation of a CME in a data driven solar corona background computed using the photospheric magnetogram data. We constrain the CME model parameters using the observations of such key CME properties as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-light coronagraph images. The reconnected magnetic flux in the area covered by the post eruption arcade is used to estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 7 March 2011 to demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km/s and its poloidal flux, as estimated from source active region data, was 4.9e21 Mx. Using our approach, we were able to simulate this CME with the speed 840 km/s and the poloidal flux of 5.1e21 Mx, in remarkable agreement with the observations.