Analytic approach to the edge state of the Kane-Mele Model


Abstract in English

We investigate the edge state of a two-dimensional topological insulator based on the Kane-Mele model. Using complex wave numbers of the Bloch wave function, we derive an analytical expression for the edge state localized near the edge of a semi-infinite honeycomb lattice with a straight edge. For the comparison of the edge type effects, two types of the edges are considered in this calculation; one is a zigzag edge and the other is an armchair edge. The complex wave numbers and the boundary condition give the analytic equations for the energies and the wave functions of the edge states. The numerical solutions of the equations reveal the intriguing spatial behaviors of the edge state. We define an edge-state width for analyzing the spatial variation of the edge-state wave function. Our results show that the edge-state width can be easily controlled by a couple of parameters such as the spin-orbit coupling and the sublattice potential. The parameter dependences of the edge-state width show substantial differences depending on the edge types. These demonstrate that, even if the edge states are protected by the topological property of the bulk, their detailed properties are still discriminated by their edges. This edge dependence can be crucial in manufacturing small-sized devices since the length scale of the edge state is highly subject to the edges.

Download