No Arabic abstract
We investigate the edge state of a two-dimensional topological insulator based on the Kane-Mele model. Using complex wave numbers of the Bloch wave function, we derive an analytical expression for the edge state localized near the edge of a semi-infinite honeycomb lattice with a straight edge. For the comparison of the edge type effects, two types of the edges are considered in this calculation; one is a zigzag edge and the other is an armchair edge. The complex wave numbers and the boundary condition give the analytic equations for the energies and the wave functions of the edge states. The numerical solutions of the equations reveal the intriguing spatial behaviors of the edge state. We define an edge-state width for analyzing the spatial variation of the edge-state wave function. Our results show that the edge-state width can be easily controlled by a couple of parameters such as the spin-orbit coupling and the sublattice potential. The parameter dependences of the edge-state width show substantial differences depending on the edge types. These demonstrate that, even if the edge states are protected by the topological property of the bulk, their detailed properties are still discriminated by their edges. This edge dependence can be crucial in manufacturing small-sized devices since the length scale of the edge state is highly subject to the edges.
The entanglement Chern number, the Chern number for the entanglement Hamiltonian, is used to charac- terize the Kane-Mele model, which is a typical model of the quantum spin Hall phase with the time reversal symmetry. We first obtain the global phase diagram of the Kane-Mele model in terms of the entanglement spin Chern number, which is defined by using a spin subspace as a subspace to be traced out in preparing the entanglement Hamiltonian. We further demonstrate the effectiveness of the entanglement Chern number without the time reversal symmetry and spin conservation by extending the Kane-Mele model to include the Zeeman term. The numerical results confirm that the sum of the entanglement spin Chern number equals to the Chern number.
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
The description of interactions in strongly-correlated topological phases of matter remains a challenge. Here, we develop a stochastic functional approach for interacting topological insulators including both charge and spin channels. We find that the Mott transition of the Kane-Mele-Hubbard model may be described by the variational principle with one equation. We present different views of this equation from the electron Greens function, the free-energy and the Hellmann-Feynman theorem. The band gap remains finite at the transition and the Mott phase is characterized by antiferromagnetism in the $x-y$ plane. The interacting topological phase is described through a $mathbb{Z}_2$ number related to helical edge modes. Our results then show that improving stochastic approaches can give further insight on the understanding of interacting phases of matter.
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening. According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with $SU(2)$ Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality for the quantum spin Hall to antiferromagnet transition.
We study free, capped and encapsulated bilayer jacutingaite Pt$_2$HgSe$_3$ from first principles. While the free standing bilayer is a large gap trivial insulator, we find that the encapsulated structure has a small trivial gap due to the competition between sublattice symmetry breaking and sublattice-dependent next-nearest-neighbor hopping. Upon the application of a small perpendicular electric field, the encapsulated bilayer undergoes a topological transition towards a quantum spin Hall insulator. We find that this topological transition can be qualitatively understood by modeling the two layers as uncoupled and described by an imbalanced Kane-Mele model that takes into account the sublattice imbalance and the corresponding inversion-symmetry breaking in each layer. Within this picture, bilayer jacutingaite undergoes a transition from a 0+0 state, where each layer is trivial, to a 0+1 state, where an unusual topological state relying on Rashba-like spin orbit coupling emerges in only one of the layers.