Do you want to publish a course? Click here

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised proton

165   0   0.0 ( 0 )
 Added by Andrea Bressan
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

rate research

Read More

The measurements of the Collins and Sivers asymmetries of identified hadrons produced in deep-inelastic scattering of 160 GeV/c muons on a transversely polarised 6LiD target at COMPASS are presented. The results for charged pions and charged and neutral kaons correspond to all data available, which were collected from 2002 to 2004. For all final state particles both the Collins and Sivers asymmetries turn out to be small, compatible with zero within the statistical errors, in line with the previously published results for not identified charged hadrons, and with the expected cancellation between the u- and d-quark contributions.
58 - Richard Webb 2005
COMPASS is a fixed-target experiment on the SPS M2 beamline at CERN. Its LiD target can be polarised both longitudinally and transversally with respect to the longitudinally polarised 160 GeV/c muon beam. Approximately 20% of the beam-time in 2002, 2003 and 2004 was spent in the transverse configuration, allowing the first measurement of both the Collins and Sivers asymmetries on a deuterium target. First results from the the transverse data of the COMPASS run in 2002 are reported here.
CP asymmetries have been measured recently by the LHCb collaboration in three-body $B^+$ decays to final states involving charged pions and kaons. Large asymmetries with opposite signs at a level of about 60% have been observed in $B^pmto pi^pm({rm or} K^pm)pi^+pi^-$ and $B^pm to pi^pm K^+K^-$ for restricted regions in the Dalitz plots involving $pi^+pi^-$ and $K^+K^-$ with low invariant mass. U-spin is shown to predict corresponding $Delta S=0$ and $Delta S=1$ asymmetries with opposite signs and inversely proportional to their branching ratios, in analogy with a successful relation predicted thirteen years ago between asymmetries in $B_sto K^-pi^+$ and $B^0 to K^+ pi^-$. We compare these predictions with the measured integrated asymmetries. Effects of specific resonant or non-resonant partial waves on enhanced asymmetries for low-pair-mass regions of the Dalitz plot are studied in $B^pm to pi^pm pi^+pi^-$. The closure of low-mass $pi^+pi^-$ and $K^+K^-$ channels involving only $pipi leftrightarrow Kbar K$ rescattering may explain by CPT approximately equal magnitudes and opposite signs measured in $B^pmto pi^pmpi^+pi^-$ and $B^pm to pi^pm K^+K^-$.
The azimuthal cos{phi} and cos2{phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.
The time-dependent $C!P$ asymmetries in $B^0topi^+pi^-$ and $B_s^0to K^+!K^-$ decays are measured using a data sample of $pp$ collisions corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The same data sample is used to measure the time-integrated $C!P$ asymmetries in $B^0to K^+pi^-$ and $B_s^0topi^+ K^-$ decays. The results are $C_{pi^+pi^-} = -0.34 pm 0.06 pm 0.01$, $S_{pi^+pi^-} = -0.63 pm 0.05 pm 0.01$, $C_{K^+!K^-} = 0.20 pm 0.06 pm 0.02$, $S_{K^+!K^-} = 0.18 pm 0.06 pm 0.02$, $C_{K^+!K^-}^{DeltaGamma} = -0.79 pm 0.07 pm 0.10$, $A_{C!P}^{B^0} = -0.084 pm 0.004 pm 0.003$, and $A_{C!P}^{B_s^0} = 0.213 pm 0.015 pm 0.007$, where the first uncertainties are statistical and the second systematic. Evidence for $C!P$ violation is found in the $B_s^0to K^+!K^-$ decay for the first time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا