Do you want to publish a course? Click here

Investigating Brown Dwarf Variability at 3.4 & 4.6 Microns with AllWISE Multi-Epoch Photometry

189   0   0.0 ( 0 )
 Added by Gregory Mace
 Publication date 2014
  fields Physics
and research's language is English
 Authors Gregory Mace




Ask ChatGPT about the research

Multi-epoch photometry from AllWISE provides the opportunity to investigate variability at 3.4 and 4.6 microns for most known brown dwarfs. WISE observed the same patch of sky repeatedly and within a days time, roughly 12 observations were obtained on a given patch of sky; then, another 12 were obtained roughly six months later when that patch of sky was again in view. For most of the sky, AllWISE contains two separate epochs of about a dozen observations each, although ~30% of the sky has three such epochs available in AllWISE. With the AllWISE multi-epoch photometry of ~1500 known M, L, T, and Y dwarfs, I computed the Stetson J Index and quantified variability as a function of spectral type. I found that the average single-exposure photometric uncertainty in AllWISE (~0.2 magnitudes) is too large to robustly identify flux variability smaller than ~20%. However, multi-epoch photometry from AllWISE remains a useful resource in cases where flux variability is known to be present with large amplitudes, or for bright nearby objects with lower photometric uncertainties.



rate research

Read More

We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and required to have [3.6]-[4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened AGN. Optical detection of 4 of the remaining 18 sources implies they are likely also AGN, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of ~ T8. The proper motion is < 0.25 /yr, consistent with expectations for a luminosity inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5]=2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. (2003) predict larger numbers of cool brown dwarfs should be found for a Chabrier (2003) mass function. Suppressing the model [4.5] flux by a factor of two, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer (WISE) will probe a volume ~40x larger and should find hundreds of brown dwarfs cooler than T7.
Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (dex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.
With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we have conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.
WD0137-349 is a white dwarf-brown dwarf binary system in a 116 minute orbit. We present radial velocity observations and multiwaveband photometry from V, R and I in the optical, to J, H and Ks in the near-IR and [3.6], [4.5], [5.8] and [8.0] microns in the mid-IR. The photometry and lightcurves show variability in all wavebands, with the amplitude peaking at [4.5] microns, where the system is also brightest. Fluxes and brightness temperatures were computed for the heated and unheated atmosphere of the brown dwarf (WD0137-349B) using synthetic spectra of the white dwarf using model atmosphere simulations. We show that the flux from the brown dwarf dayside is brighter than expected in the Ks and [4.5] micron bands when compared to models of irradiated brown dwarfs with full energy circulation and suggest this over-luminosity may be attributed to H2 fluorescence or H3+ being generated in the atmosphere by the UV irradiation.
142 - N.R. Deacon 2010
Widefield surveys have always provided a rich hunting ground for the coolest stars and brown dwarfs. The single epoch surveys at the beginning of this century greatly expanded the parameter space for ultracool dwarfs. Here we outline the science possible from new multi-epoch surveys which add extra depth and open the time domain to study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا