The abstract boundary construction of Scott and Szekeres provides a `boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as objects within this boundary. In a previous paper by the authors, a topology referred to as the attached point topology was defined for a manifold and its abstract boundary, thereby providing us with a description of how the abstract boundary is related to the underlying manifold. In this paper, a second topology, referred to as the strongly attached point topology, is presented for the abstract boundary construction. Whereas the abstract boundary was effectively disconnected from the manifold in the attached point topology, it is very much connected in the strongly attached point topology. A number of other interesting properties of the strongly attached point topology are considered, each of which support the idea that it is a very natural and appropriate topology for a manifold and its abstract boundary.