Do you want to publish a course? Click here

Geometric Analysis of Reductions from Schlesinger Transformations to Difference Painleve Equations

226   0   0.0 ( 0 )
 Added by Anton Dzhamay
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present two examples of reductions from the evolution equations describing discrete Schlesinger transformations of Fuchsian systems to difference Painleve equations: difference Painleve equation d-$Pleft({A}_{2}^{(1)*}right)$ with the symmetry group ${E}^{(1)}_{6}$ and difference Painleve equation d-$Pleft({A}_{1}^{(1)*}right)$ with the symmetry group ${E}^{(1)}_{7}$. In both cases we describe in detail how to compute their Okamoto space of the initial conditions and emphasize the role played by geometry in helping us to understand the structure of the reduction, a choice of a good coordinate system describing the equation, and how to compare it with other instances of equations of the same type.



rate research

Read More

Schlesinger transformations are algebraic transformations of a Fuchsian system that preserve its monodromy representation and act on the characteristic indices of the system by integral shifts. One of the important reasons to study such transformations is the relationship between Schlesinger transformations and discrete Painleve equations; this is also the main theme behind our work. We derive emph{discrete Schlesinger evolution equations} describing discrete dynamical systems generated by elementary Schlesinger transformations and give their discrete Hamiltonian description w.r.t.~the standard symplectic structure on the space of Fuchsian systems. As an application, we compute explicitly two examples of reduction from Schlesinger transformations to difference Painleve equations. The first example, d-$Pbig(D_{4}^{(1)}big)$ (or difference Painleve V), corresponds to Backlund transformations for continuous $P_{text{VI}}$. The second example, d-$Pbig(A_{2}^{(1)*}big)$ (with the symmetry group $E_{6}^{(1)}$), is purely discrete. We also describe the role played by the geometry of the Okamoto space of initial conditions in comparing different equations of the same type.
Although the theory of discrete Painleve (dP) equations is rather young, more and more examples of such equations appear in interesting and important applications. Thus, it is essential to be able to recognize these equations, to be able to identify their type, and to see where they belong in the classification scheme. The definite classification scheme for dP equations was proposed by H. Sakai, who used geometric ideas to identify 22 different classes of these equations. However, in a major contrast with the theory of ordinary differential Painleve equations, there are infinitely many non-equivalent discrete equations in each class. Thus, there is no general form for a dP equation in each class, although some nice canonical examples in each equation class are known. The main objective of this paper is to illustrate that, in addition to providing the classification scheme, the geometric ideas of Sakai give us a powerful tool to study dP equations. We consider a very complicated example of a dP equation that describes a simple Schlesinger transformation of a Fuchsian system and we show how this equation can be identified with a much simpler canonical example of the dP equation of the same type and moreover, we give an explicit change of coordinates transforming one equation into the other. Among our main tools are the birational representation of the affine Weyl symmetry group of the equation and the period map. Even though we focus on a concrete example, the techniques that we use are general and can be easily adapted to other examples.
In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain rational surfaces called the spaces of initial values, which are characterized by eight point configuration on $mathbb{P}^1timesmathbb{P}^1$ and classified according to the degeration of points. We give a systematic description of the equations and their various properties, such as affine Weyl group symmetries, hypergeomtric solutions and Lax pairs under this framework, by using the language of Picard lattice and root systems. We also provide with a collection of basic data; equations, point configurations/root data, Weyl group representations, Lax pairs, and hypergeometric solutions of all possible cases.
156 - Anton Dzhamay 2009
We study factorizations of rational matrix functions with simple poles on the Riemann sphere. For the quadratic case (two poles) we show, using multiplicative representations of such matrix functions, that a good coordinate system on this space is given by a mix of residue eigenvectors of the matrix and its inverse. Our approach is motivated by the theory of discrete isomonodromic transformations and their relationship with difference Painleve equations. In particular, in these coordinates, basic isomonodromic transformations take the form of the discrete Euler-Lagrange equations. Secondly we show that dPV equations, previously obtained in this context by D. Arinkin and A. Borodin, can be understood as simple relationships between the residues of such matrices and their inverses.
301 - K.Kajiwara , T.Masuda , M.Noumi 2004
A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective space. By introducing an elliptic parametrization of point configurations, a realization of the Weyl group is proposed as a group of Cremona transformations containing elliptic functions in the coefficients. For this elliptic Cremona system, a theory of $tau$-functions is developed to translate it into a system of bilinear equations of Hirota-Miwa type for the $tau$-functions on the lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا