No Arabic abstract
We build a Spitzer IRAC complete catalog of objects, obtained by complementing the $K_mathrm{s}$-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., $log(M_*/M_odot)>11$) galaxies at $4<z<7$, we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of $4<z<7$ galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at $4<z<7$. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from $zsim6.5$ to $zsim 3.5$, implying that massive galaxies could already be present when the Universe was $sim0.9$~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of $z>4$ galaxies with best fit masses $log(M_*/M_odot)>11$ by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive ($log(M_*/M_odot)sim11.5$), quiescent galaxy at $zsim5.4$, with MIPS $24mu$m detection suggesting the presence of a powerful obscured AGN.
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks_auto>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]<23, Ks_auto>24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=<z<5, accounting for >~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.
We present an estimation of lifetimes of massive galaxies with distinct UV colors at $0.5 le z le 2.5$ in the COSMOS/UltraVISTA field. After dividing the galaxy sample into subsamples of red sequence (RS), blue cloud (BC), and green valley (GV) galaxies in different redshift bins, according to their rest-frame extinction-corrected UV colors, we derive their lifetimes using clustering analyses. Several essentials that may influence the lifetime estimation have been explored, including the dark matter (DM) halo mass function (HMF), the width of redshift bin, the growth of DM halos within each redshift bin, and the stellar mass. We find that the HMF difference results in scatters of $sim0.2$ dex on lifetime estimation; adopting a redshift bin width of $Delta z = 0.5$ is good enough to estimate the lifetime; and no significant effect on lifetime estimation is found due to the growth of DM halos within each redshift bin. The galaxy subsamples with higher stellar masses generally have shorter lifetimes; however, the lifetimes among different subsamples at z > 1:5 tend to be independent of stellar mass. Consistently, the clustering-based lifetime for each galaxy subsample agrees well with that inferred using the spectral energy distribution modeling. Moreover, the lifetimes of the RS and BC galaxies also coincide well with their typical gas depletion timescales attributed to the consumption of star formation. Interestingly, the distinct lifetime behaviors of the GV galaxies at $z le 1.5$ and $z>1.5$ can not be fully accounted for by their gas depletion timescales. Instead, this discrepancy between the lifetimes and gas depletion timescales of the GV galaxies suggests that there are additional physical processes, such as feedback of active galactic nuclei, accelerating the quenching of GV galaxies at high redshifts.
We present the Super Eight galaxies - a set of very luminous, high-redshift ($7.1<z<8.0$) galaxy candidates found in Brightest of Reionizing Galaxies (BoRG) Survey fields. The original sample includes eight galaxies that are $Y$-band dropout objects with $H$-band magnitudes of $m_H<25.5$. Four of these objects were originally reported in Calvi et al. 2016. Combining new Hubble Space Telescope (HST) WFC3/F814W imaging and $Spitzer$ IRAC data with archival imaging from BoRG and other surveys, we explore the properties of these galaxies. Photometric redshift fitting places six of these galaxies in the redshift range of $7.1<z<8.0$, resulting in three new high-redshift galaxies and confirming three of the four high-redshift galaxy candidates from Calvi et al. 2016. We calculate the half-light radii of the Super Eight galaxies using the HST F160W filter and find that the Super Eight sizes are in line with typical evolution of size with redshift. The Super Eights have a mean mass of log(M$_*$/M$_odot$) $sim10$, which is typical for sources in this luminosity range. Finally, we place our sample on the UV $zsim8$ luminosity function and find that the Super Eight number density is consistent with other surveys in this magnitude and redshift range.
We report the likely identification of a substantial population of massive M~10^11M_Sun galaxies at z~4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey. The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000AA breaks, relatively old stellar populations, large stellar masses and low SFRs, with a median specific SFR of 2.9+/-1.8 x 10^-11/yr. Ultradeep Herschel/PACS 100micron, 160micron and Spitzer/MIPS 24micron data reveal no dust-obscured SFR activity for 15/19 (79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the SED fit, indicating independently that the average specific SFR is at least 10x smaller than of typical star-forming galaxies at z~4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8+/-0.7 x 10^-5Mpc^-3 to a limit of log10M/M_Sun>10.6, which is 10x and 80x lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z~4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8Gyr and stellar mass of 0.8x10^11M_Sun, the galaxies likely started forming stars before z =5, with SFRs well in excess of 100M_Sun/yr, far exceeding that of similarly abundant UV-bright galaxies at z>4. This suggests that most of the star-formation in the progenitors of quiescent z~4 galaxies was obscured by dust.
We investigate the stellar and dust properties of massive (log$(M_*/M_odot) ge 10.5$) and dusty ($A_V ge 1$) galaxies at $1 le z le 4$ by modeling their spectral energy distributions (SEDs) obtained from the combination of UltraVISTA DR3 photometry and textit{Herschel} PACS-SPIRE data using MAGPHYS. Although the rest-frame U-V vs V-J (UVJ) diagram traces well the star-formation rates (SFR) and dust obscuration (A$_V$) out to $z sim 3$, $sim$15-20% of the sample surprisingly resides in the quiescent region of the UVJ diagram, while $sim50$% at $3<z<4$ fall in the unobscured star-forming region. The median SED of massive dusty galaxies exhibits weaker MIR and UV emission, and redder UV slopes with increasing cosmic time. The IR emission for our sample has a significant contribution ($>20%$) from dust heated by evolved stellar populations rather than star formation, demonstrating the need for panchromatic SED modeling. The local relation between dust mass and SFR is followed only by a sub-sample with cooler dust temperatures, while warmer objects have reduced dust masses at a given SFR. Most star-forming galaxies in our sample do not follow local IRX-$beta$ relations, though IRX does strongly correlate with A$_V$. Our sample follows local relations, albeit with large scatter, between ISM diagnostics and sSFR. We show that FIR-detected sources represent the extreme of a continuous population of dusty galaxies rather than a fundamentally different population. Finally, using commonly adopted relations to derive SFRs from the combination of the rest-frame UV and the observed 24$mu$m is found to overestimate the SFR by a factor of 3-5 for the galaxies in our sample.