Do you want to publish a course? Click here

Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state

254   0   0.0 ( 0 )
 Added by Manuel Castro
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$thinspace$sim 50${thinspace}keV and optical depth around 1. Previous spectral studies of 1E{thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modeled by a more detailed Comptonization scheme. Furthermore, we find the presence of an iron K-edge absorption feature in one occasion, which confirms what had been previously observed by Suzaku. Our broadband analysis of this limited sample shows a rich spectral variability in 1E{thinspace}1740.7$-$2942 at the low/hard state, and we address the possible causes of these variations. More simultaneous soft/hard X-ray observations of this system and other black-hole binaries would be very helpful in constraining the Comptonization scenario and shedding more light on the physics of these systems.



rate research

Read More

Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope $beta=0.59pm0.02$, consistent with the NSs slope ($beta=0.44^{+0.05}_{-0.04}$) within 2.5$sigma$. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor $sim$22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent ($>3sigma$), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.
We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. We show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.
We study X-ray spectra from the outburst rise of the accreting black-hole binary MAXI J1820+070. We find that models having the disk inclinations within those of either the binary or the jet imply significant changes of the accretion disk inner radius during the luminous part of the hard spectral state, with that radius changing from $>$100 to $sim$10 gravitational radii. The main trend is a decrease with the decreasing spectral hardness. Our analysis requires the accretion flow to be structured, with at least two components with different spectral slopes. The harder component dominates the bolometric luminosity and produces strong, narrow, X-ray reflection features. The softer component is responsible for the underlying broader reflection features. The data are compatible with the harder component having a large scale height, located downstream the disk truncation radius, and reflecting mostly from remote parts of the disk. The softer component forms a corona above the disk up to some transition radius. Our findings can explain the changes of the characteristic variability time scales, found in other works, as being driven by the changes of the disk characteristic radii.
The optical counterpart of the black-hole soft X-ray transient Nova Muscae 1991 has brightened by $Delta{V}approx0.8$ mag since its return to quiescence 23 years ago. We present the first clear evidence that the brightening of soft X-ray transients in quiescence occurs at a nearly linear rate. This discovery, and our precise determination of the disk component of emission obtained using our $simultaneous$ photometric and spectroscopic data, have allowed us to identify and accurately model archival ellipsoidal light curves of the highest quality. The simultaneity, and the strong constraint it provides on the component of disk emission, is a key element of our work. Based on our analysis of the light curves, and our earlier measurements of the mass function and mass ratio, we have obtained for Nova Muscae 1991 the first accurate estimates of its systemic inclination $i=43.2^{+2.1}_{-2.7}$ deg, and black hole mass $M=11.0^{+2.1}_{-1.4} M_odot$. Based on our determination of the radius of the secondary, we estimate the distance to be $D=4.95^{+0.69}_{-0.65}$ kpc. We discuss the implications of our work for future dynamical studies of black-hole soft X-ray transients.
We study X-ray and soft gamma-ray spectra from the hard state of the accreting black-hole binary MAXI J1820+070. We perform analysis of two joint spectra from NuSTAR and INTEGRAL, covering the range of 3--650 keV, and of an average joint spectrum over the rise of the hard state, covering the 3--2200 keV range. The spectra are well modelled by Comptonization of soft seed photons. However, the distributions of the scattering electrons are not purely thermal; we find they have substantial high-energy tails, well modelled as power laws. The photon tail in the average spectrum is detected well beyond the threshold for electron-positron pair production, 511 keV. This allows us to calculate the rate of the electron-positron pair production and put a lower limit on the size of the source from pair equilibrium. At the fitted Thomson optical depth of the Comptonizing plasma, the limit is about 4 gravitational radii. If we adopt the sizes estimated by us from the reflection spectroscopy of $>$20 gravitational radii, the fractional pair abundance becomes much less than unity. The low pair abundance is confirmed by the lack of both an annihilation feature and of a pair absorption cutoff above 511 keV in the average spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا