Do you want to publish a course? Click here

The Higgs oscillator on the hyperbolic plane and Light-Front Holography

71   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Light Front Holographic (LFH) wave equation, which is the conformal scalar equation on the plane, is revisited from the perspective of the supersymmetric quantum mechanics, and attention is drawn to the fact that it naturally emerges in the small hyperbolic angle approximation to the curved Higgs oscillator on the hyperbolic plane, i.e. on the upper part of the two-dimensional hyperboloid of two sheets, a space of constant negative curvature. Such occurs because the particle dynamics under consideration reduces to the one dimensional Schrodinger equation with the second hyperbolic Poschl-Teller potential, whose flat-space (small-angle) limit reduces to the conformally invariant inverse square distance plus harmonic oscillator interaction, on which LFH is based. In consequence, energies and wave functions of the LFH spectrum can be approached by the solutions of the Higgs oscillator on the hyperbolic plane in employing its curvature and the potential strength as fitting parameters. Also the proton electric charge form factor is well reproduced within this scheme by means of a Fourier-Helgason hyperbolic wave transform of the charge density. In conclusion, in the small angle approximation, the Higgs oscillator on the hyperbolic plane is demonstrated to satisfactory parallel essential outcomes of the Light Front Holographic QCD. The findings are suggestive of associating the hyperboloid curvature of the with a second scale in LFH, which then could be employed in the definition of a chemical potential.

rate research

Read More

The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate $z$ with an invariant light-front coordinate $zeta$ which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schrodinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. The distinction between static structure functions such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical structure functions which include the effects of rescattering is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. We suggest that the spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of size of the inverse pion mass in analogy to the limited physical extent of superconductor phases. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
185 - Stanley J. Brodsky 2015
Light-Front Quantization -- Diracs Front Form -- provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal, i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.
Starting from the Hamiltonian equation of motion in QCD, we identify an invariant light-front coordinate $zeta$ which allows the separation of the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single variable light-front Schrodinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-$J$ modes on anti-de Sitter (AdS) space.
110 - Stanley J. Brodsky 2018
QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and gluonic fields, not squarks nor gluinos. However, its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the underlying conformal symmetry of chiral QCD and its Pauli matrix representation. The eigensolutions of superconformal algebra provide a unified Regge spectroscopy of meson, baryon, and tetraquarks in the same 4-plet representation with a universal Regge slope. The pion $q bar q$ eigenstate has zero mass for $m_q=0.$ The superconformal relations also can be extended to heavy-light quark mesons and baryons. The combined approach of light-front holography and superconformal algebra also provides insight into the origin of the QCD mass scale and color confinement. A key observation is the remarkable dAFF principle which shows how a mass scale can appear in the Hamiltonian and the equations of motion while retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral QCD, a mass scale $kappa$ appears which determines universal Regge slopes, hadron masses in the absence of the Higgs coupling, and the mass parameter underlying the form of the nonperturbative QCD running coupling: $alpha_s(Q^2) propto exp{-{Q^2/4 kappa^2}}$, in agreement with the effective charge determined from measurements of the Bjorken sum rule. The mass scale $kappa$ underlying hadron masses can be connected to the parameter $Lambda_{overline {MS}}$ in the QCD running coupling by matching its predicted nonperturbative form to the perturbative QCD regime. One also obtains predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا