Do you want to publish a course? Click here

Crossover from charge order to strain glass in phase separated manganite thin films: Impact of thermal cycling and substrate induced strain

262   0   0.0 ( 0 )
 Added by Vasudha Agarwal
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic and magnetotransport properties of single crystalline La1-x-yPryCaxMnO3 (x=0.42, y=0.40) thin films (~140 nm) deposited on (110) oriented LaAlO3 and SrTiO3 substrates exhibit a crossover from the high temperature antiferromagnetic-charge ordered insulator (AFM-COI) phase (T>TN) to strain glass (T<Tg). At intermediate temperatures (Tg<T<TN) dynamical liquid having prominent thermal-magneto-resistive hysteresis dominates in the cooling cycle, while in the warming cycle it is preceded by ferromagnetic metal (FMM) phase. Magnetic field required to drive AFM-COI to FMM phase transition are higher than that for the strain glass. The magneto-electric nature and temperature span of the distinct magnetic regimes are sensitive to the thermal cycling and substrate induced strain.



rate research

Read More

130 - Zuhuang Chen , Yajun Qi , Lu You 2013
Crystal and domain structures of tensile-strained BiFeO3 films grown on orthorhombic (110)o PrScO3 substrates were investigated. All films possess a MB-type monoclinic structure with 109o stripe domains oriented along the [=i10]o direction. For films thicknesses less than ~40 nm, presence of well-ordered domains is proved by the detection of satellite peaks in synchrotron x-ray diffraction studies. For thicker films, For thicker films, only the Bragg reflections from tilted domains were detected. This is attributed to the broader domain size distribution in thicker films.Using planar electrodes,the in-plane polarization of the MB phase is determined to be 85 uC/cm2, which is much larger than that of compressive strained BiFeO3 films. Our results further reveal that the substrate monoclinic distortion plays a major role in determining the stripe domain formation of the rhombohedral ferroic epitaxial thin films, which sheds light to the understanding of elastic domain structure evolution in many other functional oxide thin films as well.
The origin of the resistivity minimum observed in strongly phase separated manganites has been investigated in single crystalline thin films of LPCMO (x~0.42, y~0.40). The antiferromagnetic/charge ordered insulator (AFM/COI)-ferromagnetic metal (FMM) phase transition, coupled with the colossal hysteresis between the field cool cooled and field cooled warming magnetization demonstrates strongly phase separated nature, which gives rise to non-equilibrium magnetic liquid state that freezes into a magnetic glass. The thermal cycling and magnetic field dependence of the resistivity unambiguously shows that the pronounced resistivity minimum observed during warming is a consequence non-equilibrium states resulting from the magnetic frustration created by the delicate coexistence of the FMM and AFM/COI phases. The non-equilibrium states and hence the resistivity minimum is extremely sensitive to the relative fraction of the coexisting phases and can be tuned by intrinsic and extrinsic perturbations like the defect density, thermal cycling and magnetic field.
In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca0.5MnO3, a prototypical manganite exhibiting phase separation. Two regimes for isothermal relaxation were observed according to the temperature range: for T > 100 K, aging/rejuvenation effects are observed, while for T < 100 K an irreversible aging was found. Our results show that thermal cycles act as a tool to unveil the dynamical behavior of the phase separated state in manganites, revealing the close interplay between static and dynamic properties of phase separated manganites.
It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO$_{3-delta}$ ($delta < 0.2$) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO$_{3-delta}$ films grown on DyScO$_3$ substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO$_3$ substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Neel temperatures between $T_N sim 135,pm,10,K$ and $sim 325,pm,10,K$ depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO$_{3-delta}$ thin films under large epitaxial strain.
We have studied the irreversibility of the magnetization induced by thermal cycles in La0.5Ca0.5MnO3 manganites, which present a low temperature state characterized by the coexistence of phases. The effect is evidenced by a decrease of the magnetization after cycling the sample between 300 and 50 K. We developed a phenomenological model that allows us to correlate the value of the magnetization with the number of cycles performed. The experimental results show excellent agreement with our model, suggesting that this material could be used for the development of a device to monitor thermal changes. The effect of thermal cycling is towards an increase of the amount of the non ferromagnetic phase in the compounds and it might be directly related with the strain at the contact surface among the coexisting phases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا