No Arabic abstract
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: the first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the replica symmetry breaking picture of the spin-glass phase from the droplet picture, finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
We study the spectrum of the Hessian of the Sherrington-Kirkpatrick model near T=0, whose eigenvalues are the masses of the bare propagators in the expansion around the mean-field solution. In the limit $Tll 1$ two regions can be identified. The first for $x$ close to 0, where $x$ is the Parisi replica symmetry breaking scheme parameter. In this region the spectrum of the Hessian is not trivial, and maintains the structure of the full replica symmetry breaking state found at higher temperatures. In the second region $Tll x leq 1$ as $Tto 0$, the bands typical of the full replica symmetry breaking state collapse and only two eigenvalues are found: a null one and a positive one. We argue that this region has a droplet-like behavior. In the limit $Tto 0$ the width of the full replica symmetry breaking region shrinks to zero and only the droplet-like scenario survives.
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a square lattice, comparing its properties with the usual $q$ order parameter. Finite size scaling procedures are performed. Results and analyses based on $Phi$ confirm a zero temperature phase transition and allow to identify the low temperature phase. The advantages of $Phi$ are brought out and its physical meaning is established.
A recent interesting paper [Yucesoy et al. Phys. Rev. Lett. 109, 177204 (2012), arXiv:1206:0783] compares the low-temperature phase of the 3D Edwards-Anderson (EA) model to its mean-field counterpart, the Sherrington-Kirkpatrick (SK) model. The authors study the overlap distributions P_J(q) and conclude that the two models behave differently. Here we notice that a similar analysis using state-of-the-art, larger data sets for the EA model (generated with the Janus computer) leads to a very clear interpretation of the results of Yucesoy et al., showing that the EA model behaves as predicted by the replica symmetry breaking (RSB) theory.
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point correlation for bonds at distance r that decays as $(1+r^2)^{-a/2}$, $a>0$. We study numerically with exact algorithms the ground state and domain wall excitations. Our results indicate that the inclusion of bond correlations does not lead to a spin-glass order at any finite temperature. A further analysis reveals that bond correlations have a strong effect at local length scales, inducing ferro/antiferromagnetic domains into the system. The length scale of ferro/antiferromagnetic order diverges exponentially as the correlation exponent approaches a critical value, $a to a_c = 0$. Thus, our results suggest that the system becomes a ferro/antiferromagnet only in the limit $a to 0$.