No Arabic abstract
A kind of paradoxical effects has been demonstrated that the pigeonhole principle, i.e., if three pigeons are put in two pigeonholes then at least two pigeons must stay in the same hole, fails in certain quantum mechanical scenario. Here we shall show how to associate a proof of Kochen-Specker theorem with a quantum pigeonhole effect and vise versa, e.g., from state-independent proofs of Kochen-Specker theorem some kind of state-independent quantum pigeonhole effects can be demonstrated. In particular, a state-independent version of the quantum Cheshire cat, which can be rendered as a kind of quantum pigeonhole effect about the trouble of putting two pigeons in two or more pigeonholes, arises from Peres-Mermins magic square proof of contextuality.
It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-effect explanation of the quantum Cheshire cat effect without invoking the notion that the neutron and its magnetic moment separate. Describing the experimental neutron data using weak-measurement theory is shown to be useless for unravelling the quantum Cheshire cat effect.
The concept of effective field theory leads in a natural way to a construction principle for phenomenological sensible models known under the name of the Cheshire Cat Principle. We review its formulation in the chiral bag scenario and discuss its realization for the flavor singlet axial charge. Quantum effects inside the chiral bag induce a color anomaly which requires a compensating surface term to prevent breakdown of color gauge invariance. The presence of this surface term allows one to derive in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component formula for the flavor-singlet axial charge of the proton. We show that one can obtain a striking Cheshire-Cat phenomenon with a negligibly small singlet axial charge.
We show that the recent proposal to describe the $N_f=1$ baryon in the large number of color limit as a quantum Hall droplet, can be understood as a chiral bag in a 1+2 dimensional strip using the Cheshire cat principle. For a small bag radius, the bag reduces to a vortex line which is the smile of the cat with flowing gapless quarks all spinning in the same direction. The disc enclosed by the smile is described by a topological field theory due to the Callan-Harvey anomaly out-flow. The chiral bag carries naturally unit baryon number and spin $frac 12 N_c$. The generalization to arbitrary $N_f$ is discussed.
We experimentally demonstrate that when three single photons transmit through two polarization channels, in a well-defined pre- and postselected ensemble, there are no two photons in the same polarization channel by weak-strength measurement, a counter-intuitive quantum counting effect called quantum pigeonhole paradox. We further show that this effect breaks down in second-order measurement. These results indicate the existence of quantum pigeonhole paradox and its operating regime.
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible measurements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.