Do you want to publish a course? Click here

Herschel HIFI observations of O$_2$ toward Orion: special conditions for shock enhanced emission

141   0   0.0 ( 0 )
 Added by Paul Goldsmith
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report observations of molecular oxygen (O$_2$) rotational transitions at 487 GHz, 774 GHz, and 1121 GHz toward Orion Peak A. The O2 lines at 487 GHz and 774 GHz are detected at velocities of 10-12 km/s with line widths 3 km/s; however, the transition at 1121 GHz is not detected. The observed line characteristics, combined with the results of earlier observations, suggest that the region responsible for the O$_2$ emission is 9 (6e16 cm) in size, and is located close to the H2 Peak 1position (where vibrationally-excited H$_2$ emission peaks), and not at Peak A, 23 away. The peak O2 column density is 1.1e18/cm2. The line velocity is close to that of 621 GHz water maser emission found in this portion of the Orion Molecular Cloud, and having a shock with velocity vector lying nearly in the plane of the sky is consistent with producing maximum maser gain along the line-of-sight. The enhanced O$_2$ abundance compared to that generally found in dense interstellar clouds can be explained by passage of a low-velocity C-shock through a clump with preshock density 2e4/cm3, if a reasonable flux of UV radiation is present. The postshock O$_2$ can explain the emission from the source if its line of sight dimension is ~10 times larger than its size on the plane of the sky. The special geometry and conditions required may explain why O$_2$ emission has not been detected in the cores of other massive star-forming molecular clouds.



rate research

Read More

We present a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the sub-mm with high spectral resolution, and include frequencies $>$ 1 THz where the Earths atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the mm to the far-IR using the XCLASS program which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced $chi^{2}$ analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high ($>$10$^6$ cm$^{-3}$) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H$_{2}$ column densities also derived from the HIFI survey. The distribution of rotation temperatures, $T_{rm rot}$, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge $T_{rm rot}$ distributions, indicating the hot core has the most complex thermal structure.
We present a comprehensive study of the deuterated molecules detected in the fullband HIFI survey of the Orion KL region. Ammonia, formaldehyde, and methanol and their singly deuterated isotopologues are each detected through numerous transitions in this survey with a wide range in optical depths and excitation conditions. In conjunction with a recent study of the abundance of HDO and H$_2$O in Orion KL, this study yields the best constraints on deuterium fractionation in an interstellar molecular cloud to date. As previous studies have found, both the Hot Core and Compact Ridge regions within Orion KL contain significant abundances of deuterated molecules, suggesting an origin in cold grain mantles. In the Hot Core, we find that ammonia is roughly a factor of 2 more fractionated than water. In the Compact Ridge, meanwhile, we find similar deuterium fractionation in water, formaldehyde, and methanol, with D/H ratios of (2---8) $times$ $10^{-3}$. The [CH$_2$DOH]/[CH$_3$OD] ratio in the Compact Ridge is found to be $1.2 pm 0.3$. The Hot Core generally has lower deuterium fractionation than the Compact Ridge, suggesting a slightly warmer origin, or a greater contribution from warm gas phase chemistry.
We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH$_{3}$CN, C$_{2}$H$_{3}$CN, C$_{2}$H$_{5}$CN, and NH$_{2}$CHO systematically trace hotter gas than the oxygen bearing organics CH$_{3}$OH, C$_{2}$H$_{5}$OH, CH$_{3}$OCH$_{3}$, and CH$_{3}$OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (T$_{rm kin}$$sim$300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales $gtrsim$ 10$^{5}$ years, with several species being under predicted by less than 3$sigma$. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO$_{2}$, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.
We report the results of a search for molecular oxygen (O2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O2 N_J = 3_3 - 1_2 transition at 487 GHz and the 5_4 - 3_4 transition at 774 GHz using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory. Neither line was detected, but the 3sigma upper limits established here translate to a total line-of-sight O2 column density < 1.5 10^16 cm^-2 for an emitting region whose temperature is between 30K and 250 K, or < 1 10^16 cm^-2 if the O2 emitting region is primarily at a temperature of ~< 100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O2 column density is less than 4 10^15 cm^-2, a value that is below, and possibly well below, model predictions for gas with a density of 10^4 - 10^5 cm^-3 exposed to a far ultraviolet flux 10^4 times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if: (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on Av of the Bar is less than required for O2 to reach peak abundance; (3) the O2 emission arises within dense clumps with a small beam filling factor; or, (4) the face-on depth into the Bar where O2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams.
Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا