Do you want to publish a course? Click here

Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond

140   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstrate modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitters lifetime.



rate research

Read More

We describe and experimentally demonstrate a technique for deterministic coupling between a photonic crystal (PC) nanocavity and single emitters. The technique is based on in-situ scanning of a PC cavity over a sample and allows the positioning of the cavity over a desired emitter with nanoscale resolution. The power of the technique, which we term a Scanning Cavity Microscope (SCM), is demonstrated by coupling the PC nanocavity to a single nitrogen vacancy (NV) center in diamond, an emitter system that provides optically accessible electron and nuclear spin qubits.
We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors as high as ~11,000. We investigate the dependence of a single SnV centers emission by controlling the cavity wavelength using a laser-induced gas desorption technique. Under resonance conditions, we observe an intensity enhancement of the SnV emission by a factor of 12 and a 16-fold reduction of the SnV lifetime. Based on the large enhancement of the SnV emission rate inside the cavity, we estimate the Purcell factor for the SnV zero-phonon line to be 37 and the coupling efficiency of the SnV center to the cavity, the beta factor, to be 95%. Our work paves the way for the realization of quantum photonic devices and systems based on efficient photonic interfaces using the SnV color center in diamond.
Single photon sources are an integral part of various quantum technologies, and solid state quantum emitters at room temperature appear as a promising implementation. We couple the fluorescence of individual silicon vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as $3.4~lambda^3$ and a quality factor of $1.9times 10^4$ and observe an effective Purcell factor of up to 9.2. We furthermore study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single photon rates beyond 1 GHz.
The nitrogen-vacancy center in diamond has been explored extensively as a light-matter interface for quantum information applications, however it is limited by low coherent photon emission and spectral instability. Here, we present a promising interface based on an alternate defect with superior optical properties (the germanium-vacancy) coupled to a finesse $approx11{,}000$ fiber cavity, resulting in a $31^{+11}_{-15}$-fold increase in the spectral density of emission. This work sets the stage for cryogenic experiments, where we predict a measurable increase in the spontaneous emission rate.
Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step towards future diamond-based integrated quantum optical devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا