Do you want to publish a course? Click here

The 2 to 24 micron source counts from the AKARI North Ecliptic Pole survey

229   0   0.0 ( 0 )
 Added by Kazumi Murata
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present herein galaxy number counts of the nine bands in the 2-24 micron range on the basis of the AKARI North Ecliptic Pole (NEP) surveys. The number counts are derived from NEP-deep and NEP-wide surveys, which cover areas of 0.5 and 5.8 deg2, respectively. To produce reliable number counts, the sources were extracted from recently updated images. Completeness and difference between observed and intrinsic magnitudes were corrected by Monte Carlo simulation. Stellar counts were subtracted by using the stellar fraction estimated from optical data. The resultant source counts are given down to the 80% completeness limit; 0.18, 0.16, 0.10, 0.05, 0.06, 0.10, 0.15, 0.16, and 0.44 mJy in the 2.4, 3.2, 4.1, 7, 9, 11, 15, 18 and 24 um bands, respectively. On the bright side of all bands, the count distribution is flat, consistent with the Euclidean Universe, while on the faint side, the counts deviate, suggesting that the galaxy population of the distant universe is evolving. These results are generally consistent with previous galaxy counts in similar wavebands. We also compare our counts with evolutionary models and find them in good agreements. By integrating the models down to the 80% completeness limits, we calculate that the AKARI NEP-survey revolves 20%-50% of the cosmic infrared background, depending on the wavebands.



rate research

Read More

The $AKARI$ infrared (IR) space telescope conducted two surveys (Deep and Wide) in the North Ecliptic Pole (NEP) field to find more than 100,000 IR sources using its Infrared Camera (IRC). IRCs 9 filters, which cover wavebands from 2 to 24 $mu$m continuously, make $AKARI$ unique in comparison with other IR observatories such as $Spitzer$ or $WISE$. However, studies of the $AKARI$ NEP-Wide field sources had been limited due to the lack of follow-up observations in the ultraviolet (UV) and optical. In this work, we present the Canada-France-Hawaii Telescope (CFHT) MegaPrime/MegaCam $u$-band source catalogue of the $AKARI$ NEP-Wide field. The observations were taken in 7 nights in 2015 and 2016, resulting in 82 observed frames covering 3.6 deg$^2$. The data reduction, image processing and source extraction were performed in a standard procedure using the textsc{Elixir} pipeline and the textsc{AstrOmatic} software, and eventually 351,635 sources have been extracted. The data quality is discussed in two regions (shallow and deep) separately, due to the difference in the total integration time (4,520 and 13,910 seconds). The 5$sigma$ limiting magnitude, seeing FWHM, and the magnitude at 50 per cent completeness are 25.38 mag (25.79 mag in the deep region), 0.82 arcsec (0.94 arcsec) and 25.06 mag (25.45 mag), respectively. The u-band data provide us with critical improvements to photometric redshifts and UV estimates of the precious infrared sources from the $AKARI$ space telescope.
216 - V. Buat , N. Oi , S. Heinis 2015
(Abridged) We aim to study the evolution of dust attenuation in galaxies selected in the IR in the redshift range in which they are known to dominate the star formation activity in the universe. The comparison with other measurements of dust attenuation in samples selected using different criteria will give us a global picture of the attenuation at work in star-forming galaxies and its evolution with redshift. Using multiple filters of IRC instrument, we selected more than 4000 galaxies from their rest-frame emission at 8 microns, from z~0.2 to 2$. We built SEDs from the rest-frame UV to the far-IR by adding data in the optical-NIR and from GALEX and Herschel surveys. We fit SEDs with the physically-motivated code CIGALE. We test different templates for AGNs and recipes for dust attenuation and estimate stellar masses, SFRs, amount of dust attenuation, and AGN contribution to the total IR luminosity. The AGN contribution to the total IR luminosity is found to be on average approximately 10% with a slight increase with redshift. Dust attenuation in galaxies dominating the IR luminosity function is found to increase from z=0 to z=1 and to remain almost constant from z=1 to z=1.5. Conversely, when galaxies are selected at a fixed IR luminosity, their dust attenuation slightly decreases as redshift increases but with a large dispersion. The attenuation in our mid-IR selected sample is found ~ 2 mag higher than that found globally in the universe or in UV and Halpha line selections in the same redshift range. This difference is well explained by an increase of dust attenuation with the stellar mass, in global agreement with other recent studies. Starbursting galaxies do not systematically exhibit a high attenuation
A detailed analysis of Herschel-PACS observations at the North Ecliptic Pole is presented. High quality maps, covering an area of 0.44 square degrees, are produced and then used to derive potential candidate source lists. A rigorous quality control pipeline has been used to create final legacy catalogues in the PACS Green 100 micron and Red 160 micron bands, containing 1384 and 630 sources respectively. These catalogues reach to more than twice the depth of the current archival Herschel/PACS Point Source Catalogue, detecting 400 and 270 more sources in the short and long wavelength bands respectively. Galaxy source counts are constructed that extend down to flux densities of 6mJy and 19mJy (50% completeness) in the Green 100 micron and Red 160 micron bands respectively. These source counts are consistent with previously published PACS number counts in other fields across the sky. The source counts are then compared with a galaxy evolution model identifying a population of luminous infrared galaxies as responsible for the bulk of the galaxy evolution over the flux range (5-100mJy) spanned by the observed counts, contributing approximate fractions of 50% and 60% to the cosmic infrared background (CIRB) at 100 microns and 160 microns respectively.
We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14 and 0.17 for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.
We present the first galaxy counts at 18 microns using the Japanese AKARI satellites survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8 square degrees respectively. We describe a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 percent completeness) of 0.15mJy and 0.3mJy for the NEP-Deep and NEP-Wide surveys respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4 mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24 microns. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150 microJy level we calculate that AKARI has resolved approximately 55 percent of the 18 micron cosmic infrared background relative to the predictions of contemporary source count models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا