No Arabic abstract
We reanalyze some of the critical transport experiments and provide a coherent understanding of the current generation of topological insulators (TIs). Currently TI transport studies abound with widely varying claims of the surface and bulk states, often times contradicting each other, and a proper understanding of TI transport properties is lacking. According to the simple criteria given by Mott and Ioffe-Regel, even the best TIs are not true insulators in the Mott sense, and at best, are weakly-insulating bad metals. However, band-bending effects contribute significantly to the TI transport properties including Shubnikov de-Haas oscillations, and we show that utilization of this band-bending effect can lead to a Mott insulating bulk state in the thin regime. In addition, by reconsidering previous results on the weak anti-localization (WAL) effect with additional new data, we correct a misunderstanding in the literature and generate a coherent picture of the WAL effect in TIs.
We derive the spin texture of a weak topological insulator via a supersymmetric approach that includes the roles of the bulk gap edge states and surface band bending. We find the spin texture can take one of four forms: (i) helical, (ii) hyperbolic, (iii) hedgehog, with spins normal to the Dirac-Weyl cone of the surface state, and (iv) hyperbolic hedgehog. Band bending determines the winding number in the case of a helical texture, and for all textures can be used to tune the spin texture polarization to zero. For the weak topological insulator SnTe, we show that inclusion of band bending is crucial to obtain the correct texture winding number for the (111) surface facet $Gamma$-point Dirac-Weyl cone. We argue that hedgehogs will be found only in low symmetry situations.
We show that a number of transport properties in topological insulator (TI) Bi2Se3 exhibit striking thickness-dependences over a range of up to five orders of thickness (3 nm - 170 mu m). Volume carrier density decreased with thickness, presumably due to diffusion-limited formation of selenium vacancies. Mobility increased linearly with thickness in the thin film regime and saturated in the thick limit. The weak anti-localization effect was dominated by a single two-dimensional channel over two decades of thickness. The sublinear thickness-dependence of the phase coherence length suggests the presence of strong coupling between the surface and bulk states.
Topological insulators (TI) are a new class of quantum materials with insulating bulk enclosed by topologically protected metallic boundaries. The surface states of three-dimensional TIs have spin helical Dirac structure, and are robust against time reversal invariant perturbations. This extraordinary property is notably exemplified by the absence of backscattering by nonmagnetic impurities and the weak antilocalization (WAL) of Dirac fermions. Breaking the time reversal symmetry (TRS) by magnetic element doping is predicted to create a variety of exotic topological magnetoelectric effects. Here we report transport studies on magnetically doped TI Cr-Bi2Se3. With increasing Cr concentration, the low temperature electrical conduction exhibits a characteristic crossover from WAL to weak localization (WL). In the heavily doped regime where WL dominates at the ground state, WAL reenters as temperature rises, but can be driven back to WL by strong magnetic field. These complex phenomena can be explained by a unified picture involving the evolution of Berry phase with the energy gap opened by magnetic impurities. This work demonstrates an effective way to manipulate the topological transport properties of the TI surface states by TRS-breaking perturbations.
The band alignment of semiconductor-metal interfaces plays a vital role in modern electronics, but remains difficult to predict theoretically and measure experimentally. For interfaces with strong band bending a main difficulty originates from the in-built potentials which lead to broadened and shifted band spectra in spectroscopy measurements. In this work we present a method to resolve the band alignment of buried semiconductor-metal interfaces using core level photoemission spectroscopy and self-consistent electronic structure simulations. As a proof of principle we apply the method to a clean in-situ grown InAs(100)/Al interface, a system with a strong in-built band bending. Due to the high signal-to-noise ratio of the core level spectra the proposed methodology can be used on previously inaccessible semiconductor-metal interfaces and support targeted design of novel hybrid devices and form the foundation for a interface parameter database for specified synthesis processes of semiconductor-metal systems.
Topological insulators are bulk semiconductors that manifest in-gap massless Dirac surface states due to the topological bulk-boundary correspondence principle [1-3]. These surface states have been a subject of tremendous ongoing interest, due both to their intrinsic properties and to higher order emergence phenomena that can be achieved by manipulating the interface environment [4-11]. Here, angle resolved photoemission (ARPES) spectromicroscopy and supplementary scanning tunneling microscopy (STM) are performed on the model topological insulator Bi2Se3 to investigate the interplay of crystallographic inhomogeneity with the topologically ordered bulk and surface band structure. Quantitative analysis methods are developed to obtain key spectroscopic information in spite of a limited dwell time on each measured point. Band energies are found to vary on the scale of 50 meV across the sample surface, enabling single-sample measurements that are analogous to a multi-sample doping series (termed a binning series). Focusing separately on the surface and bulk electrons reveals a nontrivial hybridization-like interplay between fluctuations in the surface and bulk state energetics.