Do you want to publish a course? Click here

Ultrafast control of Rabi oscillations in a polariton condensate

152   0   0.0 ( 0 )
 Added by Lorenzo Dominici dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.



rate research

Read More

124 - D. Colas , L. Dominici , S. Donati 2014
We propose theoretically and demonstrate experimentally a generation of light pulses whose polarization varies temporally to cover selected areas of the Poincare sphere with tunable swirling speed and total duration (1 ps and 10 ps respectively in our implementation). The effect relies on the Rabi oscillations of two polarized fields in the strong coupling regime, excited by two counter-polarized and delayed pulses. The interferences of the oscillating fields result in the precession of the Stokes vector of the emitted light while polariton lifetime imbalance results in its drift from a circle on the sphere of controllable radius to a single point at long times. The positioning of the initial and final states allows to engineer the type of polarization spanning, including a full sweeping of the Poincare sphere. The universality and simplicity of the scheme should allow for the deployment of time varying polarization fields at a technologically exploitable level.
We report the observation of low-energy, low-momenta collective oscillations of an excitonpolariton condensate in a round box trap. The oscillations are dominated by the dipole and breathing modes, and the ratio of the frequencies of the two modes is consistent with that of a weakly interacting two-dimensional trapped Bose gas. The speed of sound extracted from the dipole oscillation frequency is smaller than the Bogoliubov sound, which can be partly explained by the influence of the incoherent reservoir. These results pave the way for understanding the effects of reservoir, dissipation, energy relaxation, and finite temperature on the superfluid properties of exciton-polariton condensates and other two-dimensional open-dissipative quantum fluids.
Polariton condensation can be regarded as a self-organization phenomenon, where phase ordering is established among particles in the system. In such condensed systems, further ordering can possibly occur in the particle density distribution, under particular experimental conditions. In this work we report on spontaneous pattern formation in a polariton condensate under non-resonant optical pumping. The slightly elliptical ring-shaped excitation laser we employ is such to force condensation to occur in a single-energy state with periodic boundary conditions, giving rise to a multi-lobe standing wave patterned state.
We consider a condensate of exciton-polaritons in a diluted magnetic semiconductor microcavity. Such system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton-polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and derive a critical condition for self-trapping which is different to the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
Polaritons in microcavities are versatile quasi-2D bosonic particles with a high degree of coherence and strong nonlinearities, thanks to their hybrid light-matter character. In their condensed form, they display striking quantum hydrodynamic features analogous to atomic Bose-Einstein condensates, such as long-range order coherence, superfluidity and quantized vorticity. Their variegated dispersive and dissipative properties, however, set significant differences from their atomic counterpart. In this work, we report the unique phenomenology that is observed when a pulse of light impacts the polariton vacuum: the condensate that is instantaneously formed does not splash in real space but instead coheres into an enigmatic structure, featuring concentric rings and, most notably, a sharp and bright peak at the center. Using a state-of-the-art ultrafast imaging with 50 fs time steps, we are able to track the dynamics of the polariton mean-field wavefunction in both real and reciprocal space. The observation of the real-space collapse of the condensate into an extremely localized---resolution limited---peak is at odd with the repulsive interactions of polaritons and their positive effective mass. An unconventional mechanism is therefore at play to account for our observations. Our modeling suggests that self-trapping due to a local heating of the crystal lattice---that can be described as a collective polaron formed by a polariton condensate---could be involved. These observations hint at the fascinating fluid dynamics of polaritons in conditions of extreme intensities and ultrafast times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا