Do you want to publish a course? Click here

Tuning spin orbit interaction in high quality gate-defined InAs one-dimensional channels

164   0   0.0 ( 0 )
 Added by Javad Shabani
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-orbit coupling in solids describes an interaction between an electrons spin, an internal quantum-mechanical degree of freedom, with its linear momentum, an external property. Spin-orbit interaction, due to its relativistic nature, is typically small in solids, and is often taken into account perturbatively. It has been recently realized, however, that materials with strong spin-orbit coupling can lead to novel states of matter such as topological insulators and superconductors. This exciting development might lead to a number of useful applications ranging from spintronics to quantum computing. In particular, theory predicts that narrow band gap semiconductors with strong spin-obit coupling are a suitable platform for the realization of Majorana zero-energy modes, predicted to obey exotic non-Abelian braiding statistics. The pursuit for realizing Majorana modes in condensed matter systems and investigating their exotic properties has been a subject of intensive experimental research recently. Here, we demonstrate the first realization of gate-defined wires where one-dimensional confinement is created using electrostatic potentials, on large area InAs two dimensional electron systems (2DESs). The electronic properties of the parent 2DES are fully characterized in the region that wires are formed. The strength of the spin-orbit interaction has been measured and tuned while the high mobility of the 2DES is maintained in the wire. We show that this scheme could provide new prospective solutions for scalable and complex wire networks.



rate research

Read More

We present low temperature transport measurements on double quantum dots in InAs nanowires grown by metal-organic vapor phase epitaxy. Two dots in series are created by lithographically defined top-gates with a procedure involving no extra insulating layer. We demonstrate the full tunability from strong to weak coupling between the dots. The quantum mechanical nature of the coupling leads to the formation of a molecular state extending over both dots. The excitation spectra of the individual dots are observable by their signatures in the nonlinear transport.
Gate patterning on semiconductors is routinely used to electrostatically restrict electron movement into reduced dimensions. At cryogenic temperatures, where most studies are carried out, differential thermal contraction between the patterned gate and the semiconductor often lead to an appreciable strain modulation. The impact of such modulated strain to the conductive channel buried in a semiconductor has long been recognized, but measuring its magnitude and variation is rather challenging. Here we present a way to measure that modulation in a gate-defined GaAs-based one-dimensional channel by applying resistively-detected NMR (RDNMR) with in-situ electrons coupled to quadrupole nuclei. The detected strain magnitude, deduced from the quadrupole-split resonance, varies spatially on the order of $10^{-4}$, which is consistent with the predicted variation based on an elastic strain model. We estimate the initial lateral strain $epsilon_{xx}$ developed at the interface to be about $3.5 times 10^{-3}$.
A general form of the Hamiltonian for electrons confined to a curved one-dimensional (1D) channel with spin-orbit coupling (SOC) linear in momentum is rederived and is applied to a U-shaped channel. Discretizing the derived continuous 1D Hamiltonian to a tight-binding version, the Landauer-Keldysh formalism (LKF) for nonequilibrium transport can be applied. Spin transport through the U-channel based on the LKF is compared with previous quantum mechanical approaches. The role of a curvature-induced geometric potential which was previously neglected in the literature of the ring issue is also revisited. Transport regimes between nonadiabatic, corresponding to weak SOC or sharp turn, and adiabatic, corresponding to strong SOC or smooth turn, is discussed. Based on the LKF, interesting charge and spin transport properties are further revealed. For the charge transport, the interplay between the Rashba and the linear Dresselhaus (001) SOCs leads to an additional modulation to the local charge density in the half-ring part of the U-channel, which is shown to originate from the angle-dependent spin-orbit potential. For the spin transport, theoretically predicted eigenstates of the Rashba rings, Dresselhaus rings, and the persistent spin-helix state are numerically tested by the present quantum transport calculation.
Nanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
We report on a low-temperature transport study of a single-gate, planar field-effect device made from a free-standing, wurtzite-crystalline InAs nanosheet. The nanosheet is grown via molecular beam epitaxy and the field-effect device is characterized by gate transfer characteristic measurements and by magnetic field orientation dependent transport measurements. The measurements show that the device exhibits excellent electrical properties and the electron transport in the nanosheet is of the two-dimensional nature. Low-field magnetoconductance measurements are performed for the device at different gate voltages and temperatures, and the characteristic transport lengths, such as phase coherent length, spin-orbit length and mean free path, in the nanosheet are extracted. It is found that the spin-orbit length in the nanosheet is short, on the order of 150 nm, demonstrating the presence of strong spin-orbit interaction in the InAs nanosheet. Our results show that epitaxially grown, free-standing, InAs nanosheets can serve as an emerging semiconductor nanostructure platform for applications in spintronics, spin qubits and planar topological quantum devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا