We apply the methods of homology and K-theory for branes wrapping spaces stratified fibered over hyperbolic orbifolds. In addition, we discuss the algebraic K-theory of any discrete co-compact Lie group in terms of appropriate homology and Atiyah-Hirzebruch type spectral sequence with its non-trivial lift to K-homology. We emphasize the fact that the physical D-branes properties are completely transparent within the mathematical framework of K-theory. We derive criteria for D-brane stability in the case of strongly virtually negatively curved groups. We show that branes wrapping spaces stratified fibered over hyperbolic orbifolds carry charge structure and change the additive structural properties in K-homology.