Do you want to publish a course? Click here

Interaction effects on galaxy pairs with Gemini/GMOS- II: Oxygen abundance gradients

146   0   0.0 ( 0 )
 Added by Oli Luiz Dors Jr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we derived oxygen abundance gradients from HII regions located in eleven galaxies in eight systems of close pairs. Long-slit spectra in the range 4400-7300A were obtained with the Gemini Multi-Object Spec- trograph at Gemini South (GMOS). Spatial profiles of oxygen abundance in the gaseous phase along galaxy disks were obtained using calibrations based on strong emission-lines (N2 and O3N2). We found oxygen gradients signifi- cantly flatter for all the studied galaxies than those in typical isolated spiral galaxies. Four objects in our sample, AM1219A, AM1256B, AM 2030A and AM2030B, show a clear break in the oxygen abundance at galactocentric radius R/R25 between 0.2 and 0.5. For AM1219A and AM1256B we found negative slopes for the inner gradients, and for AM2030B we found a positive one. In all these three cases they show a flatter behaviour to the outskirts of the galaxies. For AM2030A, we found a positive-slope outer gradient while the inner one is almost compatible with a flat behaviour. A decrease of star forma- tion efficiency in the zone that corresponds to the oxygen abundance gradient break for AM1219A and AM2030B was found. For the former, a minimum in the estimated metallicities was found very close to the break zone that could be associated with a corotation radius. On the other hand, AM1256B and AM2030A, present a SFR maximum but not an extreme oxygen abundance value. All the four interacting systems that show oxygen gradient breakes the extreme SFR values are located very close to break zones. Hii regions lo- cated in close pairs of galaxies follow the same relation between the ionization parameter and the oxygen abundance as those regions in isolated galaxies.



rate research

Read More

This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.
We present here the second part of a project that aims at solving the controversy on the issue of the bar effect on the radial distribution of metals in the gas-phase of spiral galaxies. In Paper I we presented a compilation of more than 2800 HII regions belonging to 51 nearby galaxies for which we derived chemical abundances and radial abundance profiles from a homogeneous methodology. In this paper we analyse the derived gas-phase radial abundance profiles of 12+log(O/H) and log(N/O), for barred and unbarred galaxies separately, and find that the differences in slope between barred and unbarred galaxies depend on galaxy luminosity. This is due to a different dependence of the abundance gradients (in dex/kpc) on luminosity for the two types of galaxies: In the galaxy sample that we consider the gradients appear to be considerably shallower for strongly barred galaxies in the whole luminosity range, while profile slopes for unbarred galaxies become steeper with decreasing luminosity. Therefore, we only detect differences in slope for the lower luminosity (lower mass) galaxies (M_B >~ -19.5 or M_* <~ 10^{10.4} M_sun). We discuss the results in terms of the disc evolution and radial mixing induced by bars and spiral arms. Our results reconcile previous discrepant findings that were biased by the luminosity (mass) distribution of the sample galaxies and possibly by the abundance diagnostics employed.
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 squ. deg. of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between January 2011 and December 2015, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic dataset and resulting data products, including galaxy redshifts, cluster redshifts and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] 3727,3729 and H-delta, and the 4000A break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically-observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly-lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS dataset with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.
We characterise the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allows us to detect 14345 HII regions with the same image quality as with photometric data, avoiding any dilution effect. We develop a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10) or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence for the outer flattening. We find that the inner drop appears always around $rm 0.5,r_e$, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope of $alpha_{O/H} = -,0.10pm0.03,rm{dex}/r_e$. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale ($r_{O/H}$) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop ($sim0.5,r_{O/H}$) and the outer flattening ($sim1.5,r_{O/H}$).Finally, we find no significant dependence of the dispersion around the negative gradient with any galaxy property, with values compatible with the uncertainties of the derived abundances.
We use the EAGLE simulations to study the oxygen abundance gradients of gas discs in galaxies within the stellar mass range [10^9.5, 10^10.8]Mo at z=0. The estimated median oxygen gradient is -0.011 (0.002) dex kpc^-1, which is shallower than observed. No clear trend between simulated disc oxygen gradient and galaxy stellar mass is found when all galaxies are considered. However, the oxygen gradient shows a clear correlation with gas disc size so that shallower abundance slopes are found for increasing gas disc sizes. Positive oxygen gradients are detected for ~40 per cent of the analysed gas discs, with a slight higher frequency in low mass galaxies. Galaxies that have quiet merger histories show a positive correlation between oxygen gradient and stellar mass, so that more massive galaxies tend to have shallower metallicity gradients. At high stellar mass, there is a larger fraction of rotational-dominated galaxies in low density regions. At low stellar mass, non-merger galaxies show a large variety of oxygen gradients and morphologies. The normalization of the disc oxygen gradients in non-merger galaxies by the effective radius removes the trend with stellar mass. Conversely, galaxies that experienced mergers show a weak relation between oxygen gradient and stellar mass. Additionally, the analysed EAGLE discs show no clear dependence of the oxygen gradients on local environment, in agreement with current observational findings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا