No Arabic abstract
Oxygen is the most abundant element on the Sun after Hydrogen and Helium. The intensity spectrum of resonance lines of neutral Oxygen namely O {sc i} (1302, 1305 and 1306 AA,) has been studied in the literature for chromospheric diagnostics. In this paper we study the resonance scattering polarization in the O {sc i} line at 1302 AA, using two-dimensional radiative transfer in a composite atmosphere constructed using a two-dimensional magneto-hydrodynamical snapshot in the photosphere and columns of the one-dimensional FALC atmosphere in the chromosphere. The methods developed by us recently in a series of papers to solve multi-dimensional polarized radiative transfer have been incorporated in our new code POLY2D which we use for our analysis. We find that multi-dimensional radiative transfer including XRD effects is important in reproducing the amplitude and shape of scattering polarization signals of the O {sc i} line at 1302 AA,.
Magnetic fields in turbulent, convective high-$beta$ plasma naturally develop highly tangled and complex topologies---the solar photosphere being the paradigmatic example. These fields are mostly undetectable by standard diagnostic techniques with finite spatio-temporal resolution due to cancellations of Zeeman polarization signals. Observations of resonance scattering polarization have been considered to overcome these problems. But up to now, observations of scattering polarization lack the necessary combination of high sensitivity and high spatial resolution in order to directly infer the turbulent magnetic structure at the resolution limit of solar telescopes. Here, we report the detection of clear spatial structuring of scattering polarization in a magnetically quiet solar region at disk center in the Sr~{sc i} 4607~AA~spectral line on granular scales, confirming theoretical expectations. We find that the linear polarization presents a strong spatial correlation with the local quadrupole of the radiation field. The result indicates that polarization survives the dynamic and turbulent magnetic environment of the middle photosphere and is thereby usable for spatially resolved Hanle observations. This is an important step toward the long-sought goal of directly observing turbulent solar magnetic fields at the resolution limit and investigating their spatial structure.
Context. The scattering polarization signal observed in the photospheric Sr i 4607 {AA} line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims. We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods. Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results. Spatial variations of the scattering polarization in the Sr i 4607 {AA} line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Several strong resonance lines, such as H I Ly-$alpha$, Mg II k, Ca II K, Ca I 4227 AA, which are characterized by deep and broad absorption profiles in the solar intensity spectrum, show conspicuous linear scattering polarization signals when observed in quiet regions close to the solar limb. Such signals show a characteristic triplet-peak structure, with a sharp peak in the line core and extended wing lobes. The line core peak is sensitive to the presence of magnetic fields through the Hanle effect, which however is known not to operate in the line wings. Recent theoretical studies indicate that, contrary to what was previously believed, the wing linear polarization signals are also sensitive to the magnetic field through magneto-optical effects (MO). We search for observational indications of this recently discovered physical mechanism in the scattering polarization wings of the Ca I 4227 AA line. We performed a series of spectropolarimetric observations of this line using the Zurich IMaging POLarimeter (ZIMPOL) camera at the Gregory-Coude telescope of IRSOL (Switzerland) and at the GREGOR telescope in Tenerife (Spain). Spatial variations of the total linear polarization degree and of the linear polarization angle are clearly appreciable in the wings of the observed line. We provide a detailed discussion of our observational results, showing that the detected variations always take place in regions where longitudinal magnetic fields are present, thus supporting the theoretical prediction that they are produced by MO effects.
Magnetic field measurements in the upper chromosphere and above, where the gas-to-magnetic pressure ratio $beta$ is lower than unity, are essential for understanding the thermal structure and dynamical activity of the solar atmosphere. Recent developments in the theory and numerical modeling of polarization in spectral lines have suggested that information on the magnetic field of the chromosphere-corona transition region could be obtained by measuring the linear polarization of the solar disk radiation at the core of the hydrogen Lyman-$alpha$ line at 121.6~nm, which is produced by scattering processes and the Hanle effect. The Chromospheric Lyman-$alpha$ Spectropolarimeter (CLASP) sounding rocket experiment aims to measure the intensity (Stokes $I$) and the linear polarization profiles ($Q/I$ and $U/I$) of the hydrogen Lyman-$alpha$ line. In this paper we clarify the information that the Hanle effect can provide by applying a Stokes inversion technique based on a database search. The database contains all theoretical $Q/I$ and $U/I$ profiles calculated in a one-dimensional semi-empirical model of the solar atmosphere for all possible values of the strength, inclination, and azimuth of the magnetic field vector, though this atmospheric region is highly inhomogeneous and dynamic. We focus on understanding the sensitivity of the inversion results to the noise and spectral resolution of the synthetic observations as well as the ambiguities and limitation inherent to the Hanle effect when only the hydrogen Lyman-$alpha$ is used. We conclude that spectropolarimetric observations with CLASP can indeed be a suitable diagnostic tool for probing the magnetism of the transition region, especially when complemented with information on the magnetic field azimuth that can be obtained from other instruments.
Aims. We aim to explain line formation of He I D3 and He I 10830 {AA} in small-scale reconnection events. Methods. We make use of a simulated Ellerman bomb (EB), present in a Bifrost-generated radiative Magnetohydrodynamics (rMHD) snapshot. The resulting He I D3 and He I 10830 AA line intensities are synthesized in 3D using the non-LTE Multi3D code. We compare the synthetic helium spectra with observed SST/TRIPPEL raster scans of EBs in He I 10830 AA and He I D3. Results. Emission in He I D3 and He I 10830 AA is formed in a thin shell around the EB at a height of $sim 0.8$ Mm while the He I D3 absorption is formed above the EB at $sim 4$ Mm. The height at which the emission is formed corresponds to the lower boundary of the EB, where the temperature increases rapidly from $6cdot 10^3$ K to $10^6$ K. The opacity in He I D3 and He I 10830 AA is generated via photoionization-recombination driven by EUV radiation that is locally generated in the EB at temperatures in the range of $2cdot 10^4 - 2cdot 10^6$ K and electron densities between $10^{11}$ and $10^{13}$ cm$^{-3}$. The synthetic emission signals are a result of coupling to local conditions in a thin shell around the EB, with temperatures between $7cdot 10^3$ and $10^4$ K and electron densities ranging from $sim 10^{12}$ to $10^{13}$ cm$^{-3}$. Hence, both strong non-LTE as well as thermal processes play a role in the formation of He I D3 and He I 10830 AA in the synthetic EB/UV burst that we studied. Conclusions. In conclusion, the synthetic He I D3 and He I 10830 AA emission signatures are an indicator of temperatures of at least $2cdot 10^4$ K and in this case as high as $sim 10^6$ K.