Majorana Fermions Signatures in Macroscopic Quantum Tunneling


Abstract in English

Thermodynamic measurements of magnetic fluxes and I-V characteristics in SQUIDs offer promising paths to the characterization of topological superconducting phases. We consider the problem of macroscopic quantum tunneling in an rf-SQUID in a topological superconducting phase. We show that the topological order shifts the tunneling rates and quantum levels, both in the parity conserving and fluctuating cases. The latter case is argued to actually enhance the signatures in the slowly fluctuating limit, which is expected to take place in the quantum regime of the circuit. In view of recent advances, we also discuss how our results affect a $pi$-junction loop.

Download