Do you want to publish a course? Click here

The Renormalizable Three-Term Polynomial Inflation with Large Tensor-to-Scalar Ratio

212   0   0.0 ( 0 )
 Added by Lina Wu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically study the renormalizable three-term polynomial inflation in the supersymmetric and non-supersymmetric models. The supersymmetric inflaton potentials can be realized in supergravity theory, and only have two independent parameters. We show that the general renormalizable supergravity model is equivalent to one kind of our supersymmetric models. We find that the spectral index and tensor-to-scalar ratio can be consistent with the Planck and BICEP2 results, but the running of spectral index is always out of the $2sigma$ range. If we do not consider the BICEP2 experiment, these inflationary models can be highly consistent with the Planck observations and saturate its upper bound on the tensor-to-scalar ratio ($r le 0.11$). Thus, our models can be tested at the future Planck and QUBIC experiments.



rate research

Read More

Extending our previous work on the robustness of inflation to perturbations in the scalar field, we investigate the effects of perturbations in the transverse traceless part of the extrinsic curvature on the evolution of an inhomogeneous inflaton field. Focusing on small field models, we show that these additional metric inhomogeneities initially reduce the total number of e-folds as the amplitude increases, but that the reduction saturates and even reverses above a certain amplitude. We present an argument that this is due to the presence of a large initial Hubble friction when metric perturbations are large.
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the $T$, $E$, and $B$ modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
In the context of the Palatini formalism of gravity with an $R^{2}$ term, a $phi^{2}$ potential can be consistent with the observed bound on $r$ whilst retaining the successful prediction for $n_{s}$. Here we show that the Palatini $phi^{2} R^2$ inflation model can also solve the super-Planckian inflaton problem of $phi^{2}$ chaotic inflation, and that the model can be consistent with Planck scale-suppressed potential corrections. If $alpha gtrsim 10^{12}$, where $alpha$ is the coefficient of the $R^2$ term, the inflaton in the Einstein frame, $sigma$, remains sub-Planckian throughout inflation. In addition, if $alpha gtrsim 10^{20}$ then the predictions of the model are unaffected by Planck-suppressed potential corrections in the case where there is a broken shift symmetry, and if $alpha gtrsim 10^{32}$ then the predictions are unaffected by Planck-suppressed potential corrections in general. The value of $r$ is generally small, with $r lesssim 10^{-5}$ for $alpha gtrsim 10^{12}$. We calculate the maximum possible reheating temperature, $T_{R;max}$, corresponding to instantaneous reheating. For $alpha approx 10^{32}$, $T_{R; max}$ is approximately $10^{10}$ GeV, with larger values of $T_{R;max}$ for smaller $alpha$. For the case of instantaneous reheating, we show that $n_{s}$ is in agreement with the 2018 Planck results to within 1-$sigma$, with the exception of the $alpha approx 10^{32}$ case, which is close to the 2-$sigma$ lower bound. Following inflation, the inflaton condensate is likely to rapidly fragment and form oscillons. Reheating via inflaton decays to right-handed neutrinos can easily result in instantaneous reheating. We determine the scale of unitarity violation and show that, in general, unitarity is conserved during inflation.
We investigate the scalar perturbation of the inflation model driven by a massive-scalar field in Eddington-inspired Born-Infeld gravity. We focus on the perturbation at the attractor stage in which the first and the second slow-roll conditions are satisfied. The scalar perturbation exhibits the corrections to the chaotic inflation model in general relativity. We find that the tensor-to-scalar ratio becomes smaller than that of the usual chaotic inflation.
We study the equivalence principle and its violations by quantum effects in scalar-tensor theories that admit a conformal frame in which matter only couples to the spacetime metric. These theories possess Ward identities that guarantee the validity of the weak equivalence principle to all orders in the matter coupling constants. These Ward identities originate from a broken Weyl symmetry under which the scalar field transforms by a shift, and from the symmetry required to couple a massless spin two particle to matter (diffeomorphism invariance). But the same identities also predict violations of the weak equivalence principle relatively suppressed by at least two powers of the gravitational couplings, and imply that quantum corrections do not preserve the structure of the action of these theories. We illustrate our analysis with a set of specific examples for spin zero and spin half matter fields that show why matter couplings do respect the equivalence principle, and how the couplings to the gravitational scalar lead to the weak equivalence principle violations predicted by the Ward identities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا