Do you want to publish a course? Click here

Properties of an almost localized Fermi liquid in applied magnetic field revisited: Statistically consistent Gutzwiller approach

222   0   0.0 ( 0 )
 Added by Marcin Wysokinski
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the Hubbard model in an applied magnetic field and analyze the properties of neutral spin-1/2 fermions within the so-called statistically consistent Gutzwiller approximation (SGA). The magnetization curve reproduces in a semiquantitative manner the experimental data for liquid 3 He in the regime of moderate correlations and in the presence of small number of vacant cells, modeled by a non-half filled-band situation, when a small number of vacancies (up to 5%) is introduced in the virtual fcc lattice. We also present the results for the magnetic susceptibility and the specific heat, in which a metamagnetic-like behavior is also singled out in a non-half-filled band case.



rate research

Read More

Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid (ALFL) composed of quasiparticles in a narrow-band with the spin-dependent masses (SDM) and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics are calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum q in applied magnetic field in the strongly Pauli limiting case (i.e. when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper pair spin distinguishable in the quantum mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer (BCS) vs. FFLO phase is analyzed in detail on temperature - applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature (HFLT) unconventional superconducting phases (FFLO being an instance) in systems such as CeCoIn_5, organic metals, and possibly others.
We study numerically the thermodynamic properties of the spin nematic phases in a magnetic field in the spin-1 bilinear-biquadratic model. When the field is applied, the phase transition temperature once goes up and then decreases rapidly toward zero, which is detected by the peak-shift in the specific heat. The underlying mechanism of the reentrant behavior is the entropic effect. In a weak field the high temperature paramagnetic phase rapidly loses its entropy while the ferroquadrupolar nematic phase remains robust by modifying the shape of the ferroquadrupolar moment. This feature serves as a fingerprint of generic ferroquadrupolar phases, while it is not observed for the case of antiferroquadrupoles.
Recently, Yb-based triangular lattice antiferromagnets have garnered significant interest as possible quantum spin liquid candidates. One example is YbMgGaO4, which showed many promising spin liquid features, but also possesses a high degree of disorder owing to site-mixing between the non-magnetic cations. To further elucidate the role of chemical disorder and to explore the phase diagram of these materials in applied field, we present neutron scattering and sensitive magnetometry measurements of the closely related compound, YbZnGaO4. Our results suggest a difference in magnetic anisotropy between the two compounds, and we use key observations of the magnetic phase crossover to motivate an exploration of the field- and exchange parameter-dependent phase diagram, providing an expanded view of the available magnetic states in applied field. This enriched map of the phase space serves as a basis to restrict the values of parameters describing the magnetic Hamiltonian with broad application to recently discovered related materials.
The magnetic properties of Co3V2O8 have been studied by single-crystal neutron-diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in the higher-temperature antiferromagnetic state. The field dependence of the intensity and position of the magnetic reflections in Co3V2O8 reveals a complex sequence of phase transitions in this Kagome staircase compound. For H//a, a commensurate-incommensurate-commensurate transition is found in a field of 0.072 T in the antiferromagnetic phase at 7.5 K. For H//c at low-temperature, an applied field induces an unusual transformation from a ferromagnetic to an antiferromagnetic state at about 1 T accompanied by a sharp increase in magnetisation.
193 - Jozef Spa{l}ek 2012
In this brief overview we discuss the principal features of real space pairing as expressed via corresponding low-energy (t-J or periodic Anderson-Kondo) effective Hamiltonian, as well as consider concrete properties of those unconventional superconductors. We also rise the basic question of statistical consistency within the so-called renormalized mean-field theory. In particular, we provide the phase diagrams encompassing the stable magnetic and superconducting states. We interpret real space pairing as correlated motion of fermion pair coupled by short-range exchange interaction of magnitude J comparable to the particle renormalized band energy $sim tx$, where $x$ is the carrier number per site. We also discuss briefly the difference between the real-space and the paramagnon - mediated sources of superconductivity. The paper concentrates both on recent novel results obtained in our research group, as well as puts the theoretical concepts in a conceptual as well as historical perspective. No slave-bosons are required to formulate the present approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا