Do you want to publish a course? Click here

Is String Interaction the Origin of Quantum Mechanics?

338   0   0.0 ( 0 )
 Added by Itzhak Bars
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.



rate research

Read More

Growth of Young diagrams, equipped with Plancherel measure, follows the automodel equation of Kerov. Using the technology of unitary matrix model we show that such growth process is exactly same as the growth of gap-less phase in Gross-Witten and Wadia (GWW) model. The limit shape of asymptotic Young diagrams corresponds to GWW transition point. Our analysis also offers an alternate proof of limit shape theorem of Vershik-Kerov and Logan-Shepp. Using the connection between unitary matrix model and free Fermi droplet description, we map the Young diagrams in automodel class to different shapes of two dimensional phase space droplets. Quantising these droplets we further set up a correspondence between automodel diagrams and coherent states in the Hilbert space. Thus growth of Young diagrams are mapped to evolution of coherent states in the Hilbert space. Gaussian fluctuations of large $N$ Young diagrams are also mapped to quantum (large $N$) fluctuations of the coherent states.
We study the relativistic quantum dynamics of a DKP oscillator field subject to a linear interaction in cosmic string space-time in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We obtain the solution of DKP oscillator in the cosmic string background. Also, we solve it with an ansatz in presence of linear interaction. We obtain the eigenfunctions and the energy levels of the relativistic field in that background.
Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp(1|2) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp(1|2) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wavefunction parity. These models--both oscillator and particle-like--realize all possible unitary irreducible representations of osp(1|2).
We study the SL(2,R) WZWN string model describing bosonic string theory in AdS_3 space-time as a deformed oscillator together with its mass spectrum and the string modified SL(2,R) uncertainty relation. The SL(2,R) string oscillator is far more quantum (with higher quantum uncertainty) and more excited than the non deformed one. This is accompassed by the highly excited string mass spectrum which is drastically changed with respect to the low excited one. The highly excited quantum string regime and the low excited semiclassical regime of the SL(2,R) string model are described and shown to be the quantum-classical dual of each other in the precise sense of the usual classical-quantum duality. This classical-quantum realization is not assumed nor conjectured. The quantum regime (high curvature) displays a modified Heisenbergs uncertainty relation, while the classical (low curvature) regime has the usual quantum mechanics uncertainty principle.
376 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even though the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا