Parallax diagnostics of radiation source geometric dilution for iron opacity experiments


Abstract in English

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J.E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch dynamic hohlraum (ZPDH) radiation source. The samples are heated to 150 - 200 eV electron temperatures and 7e21 - 4e22 e/cc electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along +/- 9 degree with respect to the z-pinch axis to infer the sample iron opacity. Here we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from +/-9 degree. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.

Download