Self-consistent Greens functions with three-body forces


Abstract in English

The present thesis aims at studying the properties of symmetric nuclear and pure neutron matter from a Greens functions point of view, including two-body and three-body chiral forces. An extended self-consistent Greens function formalism is defined to consistently incorporate three-body forces in the many-body calculations. The effect of three-nucleon interactions is included via the construction of a dressed two-body density dependent force. This is obtained performing an average of the leading order three-body terms in the chiral effective field theory expansion. The dressed force corresponds to the use of an in-medium propagator in the average which takes into account the correlations characterizing the system at each stage of the many-body calculation. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sumrule to correctly account for the effect of three-body forces. Microscopic as well as macroscopic properties of symmetric nuclear and pure neutron matter are analyzed in detailed.

Download