Do you want to publish a course? Click here

The bow shock, cold fronts and disintegrating cool core in the merging galaxy group RXJ0751.3+5012

127   0   0.0 ( 0 )
 Added by Helen Russell
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new Chandra X-ray observation of the off-axis galaxy group merger RXJ0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produced by the motion through the ambient medium, and the first detection of a group merger shock front. We detect a clear density and temperature jump associated with a bow shock of Mach number M=1.9+/-0.4 ahead of the northern group. Using galaxy redshifts and the shock velocity of 1100+/-300 km/s, we estimate that the merger axis is only 10deg from the plane of the sky. From the projected group separation of 90 kpc, this corresponds to a time since closest approach of 0.1 Gyr. The northern group hosts a dense, cool core with a ram pressure stripped tail of gas extending 100 kpc. The sheared sides of this tail appear distorted and broadened by Kelvin-Helmholtz instabilities. We use the presence of this substructure to place an upper limit on the magnetic field strength and, for Spitzer-like viscosity, show that the development of these structures is consistent with the critical perturbation length above which instabilities can grow in the intragroup medium. The northern group core also hosts a galaxy pair, UGC4052, with a surrounding IR and near-UV ring 40 kpc in diameter. The ring may have been produced by tidal stripping of a smaller galaxy by UGC4052 or it may be a collisional ring generated by a close encounter between the two large galaxies.



rate research

Read More

(Context) In recent years, our understanding of the cool cores of galaxy clusters has changed. Once thought to be relatively simple places where gas cools and flows toward the centre, now they are believed to be very dynamic places where heating from the central Active Galactic Nucleus (AGN) and cooling, as inferred from active star formation, molecular gas, and Halpha nebulosity, find an uneasy energetic balance. (Aims) We want to characterize the X-ray properties of the nearby cool-core cluster Zw1742+3306, selected because it is bright at X-ray (with a flux greater than 1e-11 erg/s/cm2 in the 0.1-2.4 keV band) and Halpha wavelengths (Halpha luminosity > 1e40 erg/s). (Methods) We used Chandra data to analyze the spatial and spectral properties of the cool core of Zw1742+3306, a galaxy cluster at z=0.0757 that emits in Halpha and presents the brightest central galaxy located in a diffuse X-ray emission with multiple peaks in surface brightness. (Results) We show that the X-ray cool core of the galaxy cluster Zw1742+3306 is thermodynamically very active with evidence of cold fronts and a weak shock in the surface brightness map and of an apparently coherent, elongated structure with metallicity greater than the value measured in the surrounding ambient gas by about 50 per cent. This anisotropic structure is 280 x 90 kpc2 and is aligned with the cold fronts and with the X-ray emission on larger scales. We suggest that all these peculiarities in the X-ray emission of Zw1742+3306 are either a very fine-tuned output of a sloshing gas in the cluster core or the product of a metal-rich outflow from the central AGN.
Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with XMM-Newton shows that cold fronts are a common feature in galaxy clusters. Indeed most (if not all) of the nearby clusters (z < 0.04) host a cold front. Understanding the origin and the nature of a such frequent phenomenon is clearly important. To gain insight on the nature of cold fronts in cool core clusters we have undertaken a systematic study of all contact discontinuities detected in our sample, measuring surface brightness, temperature and when possible abundance profiles across the fronts. We measure the Mach numbers for the cold fronts finding values which range from 0.2 to 0.9; we also detect a discontinuities in the metal profile of some clusters.
We investigate whether the swirling cold front in the core of the Perseus Cluster of galaxies has affected the outer buoyant bubbles that originated from jets from the Active Galactic Nucleus in the central galaxy NGC1275. The inner bubbles and the Outer Southern bubble lie along a North-South axis through the nucleus, whereas the Outer Northern bubble appears rotated about 45 deg from that axis. Detailed numerical simulations of the interaction indicates that the Outer Northern bubble may have been pushed clockwise accounting for its current location. Given the common occurrence of cold fronts in cool core clusters, we raise the possibility that the lack of many clear outer bubbles in such environments may be due to their disruption by cold fronts.
We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map show a cool 2-3 keV subcluster with a ram pressure stripped tail of gas just exiting the disrupted 6-7 keV primary cluster. From the sharp jump in the temperature and density of the gas, we determine that the subcluster is preceded by a bow shock with a Mach number M=2.2+/-0.8, corresponding to a velocity v=2200^{+1000}_{-900} km/s relative to the main cluster. We estimate that the subcluster passed through the primary core only 0.1-0.3 Gyr ago. In addition, we observe a slower upstream shock propagating through the outer region of the primary cluster and calculate a Mach number M=1.7+/-0.3. Based on the measured shock Mach numbers M~2 and the strength of the upstream shock, we argue that the mass ratio between the two merging clusters is between 3 and 4 to one. By comparing the Chandra observation with an archival HST observation, we find that a group of galaxies is located in front of the X-ray subcluster core but the brightest cluster galaxy is located immediately behind the X-ray peak.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا