We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the international Astronomical Unions H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions, the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (alpha = 5-75 deg) and shows weak nonlinear opposition brightening at alpha< 5 deg, providing a more reliable absolute magnitude of Hv = 19.25 +- 0.03. The phase slope (0.039 +- 0.001 mag/deg) and opposition effect amplitude (parameterized by the ratio of intensity at alpha=0.3 deg to that at alpha=5 deg, I(0.3)/I(5)=1.31+-0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w=0.041, g=-0.38, B0=1.43, and h=0.050, assuming a surface roughness parameter theta=20 deg. By combining our photometric study with a thermal model of the asteroid (Mueller et al. in preparation), we obtained a geometric albedo of pv = 0.047 +- 0.003, phase integral q = 0.32 +- 0.03, and Bond albedo AB = 0.014 +- 0.002, which are commensurate with the values for common C-type asteroids.