Probing turbulence intermittency via Auto-Regressive Moving-Average models


Abstract in English

We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the Auto-Regressive Moving-Average modeling of turbulent time series. We introduce a new index $Upsilon$ that measures the distance from a Kolmogorov-Obukhov model in the Auto-Regressive Moving-Average models space. Applying our analysis to Particle Image Velocimetry and Laser Doppler Velocimetry measurements in a von Karman swirling flow, we show that $Upsilon$ is proportional to the traditional intermittency correction computed from the structure function. Therefore it provides the same information, using much shorter time series. We conclude that $Upsilon$ is a suitable index to reconstruct the spatial intermittency of the dissipation in both numerical and experimental turbulent fields.

Download