Do you want to publish a course? Click here

Optical interferometry and adaptive optics of bright transients

391   0   0.0 ( 0 )
 Added by Florentin Millour
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bright optical transients (i.e. transients typically visible with the naked eye) are populated mainly by novae eruptions plus a few supernovae (among which the SN1987a event). One bright nova happen every two years, either in the North ot in the South hemisphere. It occurs that current interferometers have matching sensitivities, with typically visible or infrared limiting magnitude in the range 5--7. The temporal development of the fireball, followed by a dust formation phase or the appearance of many coronal lines can be sudied with the Very Large Telescope Interferometer. The detailed geometry of the first phases of novae in outburst remains virtually unexplored. This paper summarizes the work which has been done to date using the VLTI.



rate research

Read More

139 - A. Pastorello 2010
Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~ -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair-instability. Here we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum, and prominent broad absorption lines of O II. However, about 25d after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad lightcurves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
(35-words maximum) In this talk I present the scientific drivers related to the optical turbulence forecast applied to the ground-based astronomy supported by Adaptive Optics, the state of the art of the achieved results and the most relevant challenges for future progresses.
Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of $approx0.34$ arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.
We present the results of a multiplicity survey for a magnitude-limited sample of 31 classical Be stars conducted with the Navy Precision Optical Interferometer and the Mark III Stellar Interferometer. The interferometric observations were used to detect companions in ten previously known binary systems. For two of these sources (66 Oph and $beta$ Cep) new orbital solutions were obtained, while for a third source ($upsilon$ Sgr) our observations provide the first direct, visual detection of the hot sdO companion to the Be primary star. Combining our interferometric observations with an extensive literature search, we conclude that an additional four sources (o Cas, 15 Mon, $beta$ Lyr, and $beta$ Cep) also contain wider binary components that are physical companions to the narrow binaries, thus forming hierarchical multiple systems. Among the sources not previously confirmed as spectroscopic or visual binaries, BK Cam was resolved on a number of nights within a close physical proximity of another star with relative motion possibly suggesting a physical binary. Combining our interferometric observations with an extensive literature search, we provide a detailed listing of companions known around each star in the sample, and discuss the multiplicity frequency in the sample. We also discuss the prospects for future multiplicity studies of classical Be stars by long baseline optical interferometry.
We present a concept of a millimeter wavefront sensor that allows real-time sensing of the surface of a ground-based millimeter/submillimeter telescope. It is becoming important for ground-based millimeter/submillimeter astronomy to make telescopes larger with keeping their surface accurate. To establish `millimetric adaptive optics (MAO) that instantaneously corrects the wavefront degradation induced by deformation of telescope optics, our wavefront sensor based on radio interferometry measures changes in excess path lengths from characteristic positions on the primary mirror surface to the focal plane. This plays a fundamental role in planned 50-m class submillimeter telescopes such as LST and AtLAST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا