Do you want to publish a course? Click here

Detecting network communities beyond assortativity-related attributes

130   0   0.0 ( 0 )
 Added by Xin Liu Dr.
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes $rho$, i.e., to take out the effect of $rho$ on network topology and reveal the hidden community structure which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of $rho$ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by $rho$ and by other attributes. In this paper, we propose Dist-Modularity which allows us to freely choose any suitable function to simulate the effect of $rho$. Such freedom can help us probe the effect of $rho$ and detect the hidden communities which are due to other attributes. We test the effectiveness of Dist-Modularity on synthetic benchmarks and two real-world networks.



rate research

Read More

83 - Haoye Lu , Amiya Nayak 2018
Network structures, consisting of nodes and edges, have applications in almost all subjects. A set of nodes is called a community if the nodes have strong interrelations. Industries (including cell phone carriers and online social media companies) need community structures to allocate network resources and provide proper and accurate services. However, all the current detection algorithms are motivated by the practical problems, whose applicabilities in other fields are open to question. Thence, for a new community problem, researchers need to derive algorithms ad hoc, which is arduous and even unnecessary. In this paper, we represent a general procedure to find community structures in practice. We mainly focus on two typical types of networks: transmission networks and similarity networks. We reduce them to a unified graph model, based on which we propose a general method to define and detect communities. Readers can specialize our general algorithm to accommodate their problems. In the end, we also give a demonstration to show how the algorithm works.
The advent of social media has provided an extraordinary, if imperfect, big data window into the form and evolution of social networks. Based on nearly 40 million message pairs posted to Twitter between September 2008 and February 2009, we construct and examine the revealed social network structure and dynamics over the time scales of days, weeks, and months. At the level of user behavior, we employ our recently developed hedonometric analysis methods to investigate patterns of sentiment expression. We find users average happiness scores to be positively and significantly correlated with those of users one, two, and three links away. We strengthen our analysis by proposing and using a null model to test the effect of network topology on the assortativity of happiness. We also find evidence that more well connected users write happier status updates, with a transition occurring around Dunbars number. More generally, our work provides evidence of a social sub-network structure within Twitter and raises several methodological points of interest with regard to social network reconstructions.
80 - Aria Rezaei , Jie Gao 2019
A commonly used method to protect user privacy in data collection is to perform randomized perturbation on users real data before collection so that aggregated statistics can still be inferred without endangering secrets held by individuals. In this paper, we take a closer look at the validity of Differential Privacy guarantees, when the sensitive attributes are subject to social influence and contagions. We first show that in the absence of any knowledge about the contagion network, an adversary that tries to predict the real values from perturbed ones, cannot achieve an area under the ROC curve (AUC) above $1-(1-delta)/(1+e^varepsilon)$, if the dataset is perturbed using an $(varepsilon,delta)$-differentially private mechanism. Then, we show that with the knowledge of the contagion network and model, one can do significantly better. We demonstrate that our method passes the performance limit imposed by differential privacy. Our experiments also reveal that nodes with high influence on others are at more risk of revealing their secrets than others. The performance is shown through extensive experiments on synthetic and real-world networks.
Community detection, aiming to group the graph nodes into clusters with dense inner-connection, is a fundamental graph mining task. Recently, it has been studied on the heterogeneous graph, which contains multiple types of nodes and edges, posing great challenges for modeling the high-order relationship between nodes. With the surge of graph embedding mechanism, it has also been adopted to community detection. A remarkable group of works use the meta-path to capture the high-order relationship between nodes and embed them into nodes embedding to facilitate community detection. However, defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. To alleviate this issue, in this paper, we propose to exploit the context path to capture the high-order relationship between nodes, and build a Context Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the high-order relationship between nodes into the node embedding with attention mechanisms to discriminate the importance of different relationships. By maximizing the expectation of the co-occurrence of nodes connected by context paths, the model can learn the nodes embeddings that both well preserve the high-order relationship between nodes and are helpful for community detection. Extensive experimental results on four real-world datasets show that CP-GNN outperforms the state-of-the-art community detection methods.
Community structure is a typical property of many real-world networks, and has become a key to understand the dynamics of the networked systems. In these networks most nodes apparently lie in a community while there often exists a few nodes straddling several communities. An ideal algorithm for community detection is preferable which can identify the overlapping communities in such networks. To represent an overlapping division we develop a encoding schema composed of two segments, the first one represents a disjoint partition and the second one represents a extension of the partition that allows of multiple memberships. We give a measure for the informativeness of a node, and present an evolutionary method for detecting the overlapping communities in a network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا