We show that quantification of the performance of quantum-enhanced measurement schemes based on the concept of quantum Fisher information yields asymptotically equivalent results as the rigorous Bayesian approach, provided generic uncorrelated noise is present in the setup. At the same time, we show that for the problem of decoherence-free phase estimation this equivalence breaks down and the achievable estimation uncertainty calculated within the Bayesian approach is by a $pi$ factor larger than that predicted by the QFI even in the large prior knowledge (small parameter fluctuation) regime, where QFI is conventionally regarded as a reliable figure of merit. We conjecture that the analogous discrepancy is present in arbitrary decoherence-free unitary parameter estimation scheme and propose a general formula for the asymptotically achievable precision limit. We also discuss protocols utilizing states with indefinite number of particles and show that within the Bayesian approach it is legitimate to replace the number of particles with the mean number of particles in the formulas for the asymptotic precision, which as a consequence provides another argument that proposals based on the properties of the QFI of indefinite particle number states leading to sub-Heisenberg precisions are not practically feasible.