Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL


Abstract in English

New laboratory data of CH$_2$CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH$_2$CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH$_2$CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH$_2$CHCN in the ground state is (3.0$pm$0.9)x10$^{15}$ cm$^{-2}$. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH$_2$CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH$_3$NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH$_2$CHNC) and give column density ratios between the cyanide and isocyanide isomers.

Download