Do you want to publish a course? Click here

Some upper and lower bounds on PSD-rank

148   0   0.0 ( 0 )
 Added by Zhaohui Wei
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are based on viewing a positive semidefinite factorization of a matrix $M$ as a quantum communication protocol. These lower bounds depend on the entries of the matrix and not only on its support (the zero/nonzero pattern), overcoming a limitation of some previous techniques. We compare these new lower bounds with known bounds, and give examples where the new ones are better. As an application we determine the PSD-rank of (approximations of) some common matrices.



rate research

Read More

181 - Joel Friedman 2017
We develop a notion of {em inner rank} as a tool for obtaining lower bounds on the rank of matrix multiplication tensors. We use it to give a short proof that the border rank (and therefore rank) of the tensor associated with $ntimes n$ matrix multiplication over an arbitrary field is at least $2n^2-n+1$. While inner rank does not provide improvements to currently known lower bounds, we argue that this notion merits further study.
We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on $n$-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than $2^{n^c}$, for some constant $c > 0$. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-$O(1)$ sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT.
We show that every construction of one-time signature schemes from a random oracle achieves black-box security at most $2^{(1+o(1))q}$, where $q$ is the total number of oracle queries asked by the key generation, signing, and verification algorithms. That is, any such scheme can be broken with probability close to $1$ by a (computationally unbounded) adversary making $2^{(1+o(1))q}$ queries to the oracle. This is tight up to a constant factor in the number of queries, since a simple modification of Lamports one-time signatures (Lamport 79) achieves $2^{(0.812-o(1))q}$ black-box security using $q$ queries to the oracle. Our result extends (with a loss of a constant factor in the number of queries) also to the random permutation and ideal-cipher oracles. Since the symmetric primitives (e.g. block ciphers, hash functions, and message authentication codes) can be constructed by a constant number of queries to the mentioned oracles, as corollary we get lower bounds on the efficiency of signature schemes from symmetric primitives when the construction is black-box. This can be taken as evidence of an inherent efficiency gap between signature schemes and symmetric primitives.
We derive upper and lower bounds on the fidelity susceptibility in terms of macroscopic thermodynamical quantities, like susceptibilities and thermal average values. The quality of the bounds is checked by the exact expressions for a single spin in an external magnetic field. Their usefulness is illustrated by two examples of many-particle models which are exactly solved in the thermodynamic limit: the Dicke superradiance model and the single impurity Kondo model. It is shown that as far as divergent behavior is considered, the fidelity susceptibility and the thermodynamic susceptibility are equivalent for a large class of models exhibiting critical behavior.
We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most $k$. We call this the $Dyck_{k,n}$ problem. We prove a lower bound of $Omega(c^k sqrt{n})$, showing that the complexity of this problem increases exponentially in $k$. Here $n$ is the length of the word. When $k$ is a constant, this is interesting as a representative example of star-free languages for which a surprising $tilde{O}(sqrt{n})$ query quantum algorithm was recently constructed by Aaronson et al. Their proof does not give rise to a general algorithm. When $k$ is not a constant, $Dyck_{k,n}$ is not context-free. We give an algorithm with $Oleft(sqrt{n}(log{n})^{0.5k}right)$ quantum queries for $Dyck_{k,n}$ for all $k$. This is better than the trival upper bound $n$ for $k=oleft(frac{log(n)}{loglog n}right)$. Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing. By embedding the balanced parentheses problem into the grid, we show a lower bound of $Omega(n^{1.5-epsilon})$ for the directed 2D grid and $Omega(n^{2-epsilon})$ for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا