Do you want to publish a course? Click here

Baryons, Neutrinos, Feedback and Weak Gravitational Lensing

145   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OWL hydrodynamical simulations. It is specifically calibrated for $z<1.5$, where it models the simulations to an accuracy that is better than $2%$ for scales $k<10 hmbox{Mpc}^{-1}$ and better than $5%$ for $10 < k < 100 hmbox{Mpc}^{-1}$. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with no baryon feedback and massless neutrinos is rejected by the CFHTLenS lensing data with 96% confidence. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in addition to the expected constraints on the total neutrino mass.



rate research

Read More

We present a study of the relation between dark matter halo mass and the baryonic content of host galaxies, quantified via luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. We employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4. We express the relationship between halo mass and baryonic observable as a power law. For the luminosity-halo mass relation we find a slope of 1.32+/-0.06 and a normalisation of 1.19+0.06-0.07x10^13 h70^-1 Msun for red galaxies, while for blue galaxies the best-fit slope is 1.09+0.20-0.13 and the normalisation is 0.18+0.04-0.05x10^13 h70^-1 Msun. Similarly, we find a best-fit slope of 1.36+0.06-0.07 and a normalisation of 1.43+0.11-0.08x10^13 h70^-1 Msun for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16x10^13 h70^-1 Msun. For red lenses, the fraction which are satellites tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2x10^9 h70^-2 Msun. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies. We also find that the halo model, while matching the lensing signal around red lenses well, is prone to over-predicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. [abridged]
166 - Keiichi Umetsu 2010
Weak gravitational lensing of background galaxies is a unique, direct probe of the distribution of matter in clusters of galaxies. We review several important aspects of cluster weak gravitational lensing together with recent advances in weak lensing techniques for measuring cluster lensing profiles and constraining cluster structure parameters.
Upcoming weak-lensing surveys have the potential to become leading cosmological probes provided all systematic effects are under control. Recently, the ejection of gas due to feedback energy from active galactic nuclei (AGN) has been identified as major source of uncertainty, challenging the success of future weak-lensing probes in terms of cosmology. In this paper we investigate the effects of baryons on the number of weak-lensing peaks in the convergence field. Our analysis is based on full-sky convergence maps constructed via light-cones from $N$-body simulations, and we rely on the baryonic correction model of Schneider et al. (2019) to model the baryonic effects on the density field. As a result we find that the baryonic effects strongly depend on the Gaussian smoothing applied to the convergence map. For a DES-like survey setup, a smoothing of $theta_kgtrsim8$ arcmin is sufficient to keep the baryon signal below the expected statistical error. Smaller smoothing scales lead to a significant suppression of high peaks (with signal-to-noise above 2), while lower peaks are not affected. The situation is more severe for a Euclid-like setup, where a smoothing of $theta_kgtrsim16$ arcmin is required to keep the baryonic suppression signal below the statistical error. Smaller smoothing scales require a full modelling of baryonic effects since both low and high peaks are strongly affected by baryonic feedback.
We carry out an exploratory weak gravitational lensing analysis on a combined VLA and MERLIN radio data set: a deep (3.3 micro-Jy beam^-1 rms noise) 1.4 GHz image of the Hubble Deep Field North. We measure the shear estimator distribution at this radio sensitivity for the first time, finding a similar distribution to that of optical shear estimators for HST ACS data in this field. We examine the residual systematics in shear estimation for the radio data, and give cosmological constraints from radio-optical shear cross-correlation functions. We emphasize the utility of cross-correlating shear estimators from radio and optical data in order to reduce the impact of systematics. Unexpectedly we find no evidence of correlation between optical and radio intrinsic ellipticities of matched objects; this result improves the properties of optical-radio lensing cross-correlations. We explore the ellipticity distribution of the radio counterparts to optical sources statistically, confirming the lack of correlation; as a result we suggest a connected statistical approach to radio shear measurements.
Weak gravitational lensing provides a sensitive probe of cosmology by measuring the mass distribution and the geometry of the low redshift universe. We show how an all-sky weak lensing tomographic survey can jointly constrain different sets of cosmological parameters describing dark energy, massive neutrinos (hot dark matter), and the primordial power spectrum. In order to put all sectors on an equal footing, we introduce a new parameter $beta$, the second order running spectral index. Using the Fisher matrix formalism with and without CMB priors, we examine how the constraints vary as the parameter set is enlarged. We find that weak lensing with CMB priors provides robust constraints on dark energy parameters and can simultaneously provide strong constraints on all three sectors. We find that the dark energy sector is largely insensitive to the inclusion of the other cosmological sectors. Implications for the planning of future surveys are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا