Do you want to publish a course? Click here

Pairing in the continuum: the quadrupole response of the Borromean nucleus 6He

277   0   0.0 ( 0 )
 Added by Lorenzo Fortunato
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The ground state and low-lying continuum states of 6He are found within a shell model scheme, in a basis of two-particle states built out of continuum p-states of the unbound 5He nucleus, using a simple pairing contact-delta interaction. This accounts for the Borromean character of the bound ground state, revealing its composition. We investigate the quadrupole response of the system and we put our calculations into perspective with the latest experimental results. The calculated quadrupole strength distribution reproduces the narrow 2+ resonance, while a second wider peak is found at about 3.9 MeV above the g.s. energy.



rate research

Read More

Cross sections of $^{120}$Sn($alpha$,$alpha$)$^{120}$Sn elastic scattering have been extracted from the $alpha$ particle beam contamination of a recent $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn experiment. Both reactions are analyzed using systematic double folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn data may be used as the basis for the construction of a simple global $^6$He optical potential. The comparison of the $^6$He and $alpha$ data shows that the halo nature of the $^6$He nucleus leads to a clear signature in the reflexion coefficients $eta_L$: the relevant angular momenta $L$ with $eta_L gg 0$ and $eta_L ll 1$ are shifted to larger $L$ with a broader distribution. This signature is not present in the $alpha$ scattering data and can thus be used as a new criterion for the definition of a halo nucleus.
Lying at the lower edge of the `island of inversion, neutron-rich Fluorine isotopes ($^{29-31}$F) provide a curious case to study the configuration mixing in this part of the nuclear landscape. Recent studies have suggested that a prospective two-neutron halo in the dripline nucleus $^{31}$F could be linked to the occupancy of the $pf$ intruder configurations. Focusing on configuration mixing, matter radii and neutron-neutron ($nn$) correlations in the ground-state of $^{31}$F, we explore various scenarios to analyze its possible halo nature as well as the low-lying electric dipole ($E$1) response within a three-body approach. We use an analytical, transformed harmonic oscillator basis under the aegis of a hyperspherical formalism to construct the ground state three-body wave function of $^{31}$F. The $^{31}$F ground-state configuration mixing and its matter radius are computed for different choices of the $^{30}$F structure coupled to the valence neutron. The admixture of {$p_{3/2}$, $d_{3/2}$, and $f_{7/2}$} components is found to play an important role, favouring the dominance of inverted configurations with dineutron spreads for two-neutron halo formation. The increase in matter radius with respect to the core radius, $Delta r geqslant$ 0.30 fm and the dipole distributions along with the integrated $B(E1)$ strengths of $geqslant$ 2.6 $e^2$fm$^2$ are large enough to be compatible with other two-neutron halo nuclei. Three-body results for $^{31}$F indicate a large spatial extension in its ground state due to the inversion of the energy levels of the normal shell model scheme. The increase is augmented by and is proportional to the extent of the $p_{3/2}$ component in the wave function. Additionally, the enhanced dipole distributions and large $B(E1)$ strengths all point to the two-neutron halo character of $^{31}$F.
The nuclear rainbow observed in the elastic $alpha$-nucleus and light heavy-ion scattering is proven to be due to the refraction of the scattering wave by a deep, attractive real optical potential. The nuclear rainbow pattern, established as a broad oscillation of the Airy minima in the elastic cross section, originates from an interference of the refracted far-side scattering amplitudes. It is natural to expect a similar rainbow pattern also in the inelastic scattering of a nucleus-nucleus system that exhibits a pronounced rainbow pattern in the elastic channel. Although some feature of the nuclear rainbow in the inelastic nucleus-nucleus scattering was observed in experiment, the measured inelastic cross sections exhibit much weaker rainbow pattern, where the Airy oscillation is suppressed and smeared out. To investigate this effect, a novel method of the near-far decomposition of the inelastic scattering amplitude is proposed to explicitly reveal the coupled partial-wave contributions to the inelastic cross section. Using the new decomposition method, our coupled channel analysis of the elastic and inelastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies shows unambiguously that the suppression of the nuclear rainbow pattern in the inelastic scattering cross section is caused by a destructive interference of the partial waves of different multipoles. However, the inelastic scattering remains strongly refractive in these cases, where the far-side scattering is dominant at medium and large angles like that observed in the elastic scattering.
273 - Y. Z. Ma , F. R. Xu , N. Michel 2020
Starting from chiral two-nucleon (2NF) and chiral three-nucleon (3NF) potentials, we present a detailed study of 17Ne, a Borromean system, with the Gamow shell model which can capture continuum effects. More precisely, we take advantage of the normal-ordering approach to include the 3NF and the Berggren representation to treat bound, resonant and continuum states on equal footing in a complex-momentum plane. In our framework, 3NF is essential to reproduce the Borromean structure of 17Ne, while the continuum is more crucial for the halo property of the nucleus. The two-proton halo structure is demonstrated by calculating the valence proton density and correlation density. The astrophysically interesting $3/2^-$ excited state has its energy above the threshold of the proton emission, and therefore the two-proton decay should be expected from the state.
The breakup cross section (BUX) of 22C by 12C at 250 MeV/nucleon is evaluated by the continuum-discretized coupled-channels method incorporating the cluster-orbital shell model (COSM) wave functions. Contributions of the low-lying 0+_2 and 2+_1 resonances predicted by COSM to the BUX are investigated. The 2+_1 resonance gives a narrow peak in the BUX, as in usual resonant reactions, whereas the 0+_2 resonant cross section has a peculiar shape due to the coupling to the nonresonant continuum, i.e., the Fano effect. By changing the scattering angle of 22C after the breakup, a variety of shapes of the 0+_2 resonant cross sections is obtained. Mechanism of the appearance of the sizable Fano effect in the breakup of 22C is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا