We demonstrate that the superconducting critical temperature (Tc) of thin niobium films can be electrically modulated in a liquid-gated geometry device. Tc can be suppressed and enhanced by applying positive and negative gate voltage, respectively, in a reversible manner within a range of about 0.1 K. At a fixed temperature below Tc, we observed that the superconducting critical current can be modulated by gate voltage. This result suggests a possibility of an electrically-controlled switching device operating at or above liquid helium temperature, where superconductivity can be turned on or off solely by the applied gate voltage.