Two approaches to obtain the strong converse exponent of quantum hypothesis testing for general sequences of quantum states


Abstract in English

We present two general approaches to obtain the strong converse rate of quantum hypothesis testing for correlated quantum states. One approach requires that the states satisfy a certain factorization property; typical examples of such states are the temperature states of translation-invariant finite-range interactions on a spin chain. The other approach requires the differentiability of a regularized Renyi $alpha$-divergence in the parameter $alpha$; typical examples of such states include temperature states of non-interacting fermionic lattice systems, and classical irreducible Markov chains. In all cases, we get that the strong converse exponent is equal to the Hoeffding anti-divergence, which in turn is obtained from the regularized Renyi divergences of the two states.

Download