Do you want to publish a course? Click here

The uniqueness of hierarchically extended backward solutions of the Wright-Fisher model

91   0   0.0 ( 0 )
 Added by Julian Hofrichter
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The diffusion approximation of the Wright-Fisher model of population genetics leads to partial differentiable equations, the so-called Kolmogorov equations, with an operator that degenerates at the boundary. Standard tools do not apply, and in fact, solutions lack regularity properties. In this paper, we develop a regularising blow-up scheme for a certain class of solutions of the backward Kolmogorov equation, the iteratively extended global solutions presented in cite{THJ5}, and establish their uniqueness. As the model describes the random genetic drift of several alleles at the same locus from a backward perspective, the singularities result from the loss of an allele. While in an analytical approach, this causes substantial difficulties, from a biological or geometric perspective, this is a natural process that can be analyzed in detail. The presented scheme regularises the solution via a tailored successive transformation of the domain.



rate research

Read More

We develop an iterative global solution scheme for the backward Kolmogorov equation of the diffusion approximation of the Wright-Fisher model of population genetics. That model describes the random genetic drift of several alleles at the same locus in a population from a backward perspective. The key of our scheme is to connect the solutions before and after the loss of an allele. Whereas in an approach via stochastic processes or partial differential equations, such a loss of an allele leads to a boundary singularity, from a biological or geometric perspective, this is a natural process that can be analyzed in detail. A clarification of the role of the boundary resolves certain uniqueness issues and enlucidates the construction of hierarchical solutions.
We develop a global and hierarchical scheme for the forward Kolmogorov (Fokker-Planck) equation of the diffusion approximation of the Wright-Fisher model of population genetics. That model describes the random genetic drift of several alleles at the same locus in a population. The key of our scheme is to connect the solutions before and after the loss of an allele. Whereas in an approach via stochastic processes or partial differential equations, such a loss of an allele leads to a boundary singularity, from a biological or geometric perspective, this is a natural process that can be analyzed in detail. Our method depends on evolution equations for the moments of the process and a careful analysis of the boundary flux.
We develop a general solution for the Fokker-Planck (Kolomogorov) equation representing the diffusion limit of the Wright-Fisher model of random genetic drift for an arbitrary number of alleles at a single locus. From this solution, we can readily deduce information about the evolution of a Wright-Fisher population.
The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article we demonstrate that it is in fact possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا